1
|
Kirakci K, Shestopalov MA, Lang K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
2
|
Sun LR, Harrar D, Drocton G, Castillo-Pinto C, Gailloud P, Pearl MS. Endovascular therapy for acute stroke in children: age and size technical limitations. J Neurointerv Surg 2021; 13:794-798. [PMID: 33832970 DOI: 10.1136/neurintsurg-2021-017311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Endovascular therapies for acute childhood stroke remain controversial and little evidence exists to determine the minimum age and size cut-off for thrombectomy in children. Despite this, an increasing number of reports suggest feasibility of thrombectomy in at least some children by experienced operators. When compared with adults, technical modifications may be necessary in children owing to differences in vessel sizes, tolerance of blood loss, safety of contrast and radiation exposure, and differing stroke etiologies. We review critical considerations for neurologists and neurointerventionalists when treating pediatric stroke with endovascular therapies. We discuss technical factors that may limit feasibility of endovascular therapy, including size of the femoral and cervicocerebral arteries, which contributes to vasospasm risk. The risk of femoral vasospasm can be assessed by comparing catheter outer diameter with estimated femoral artery size, which can be estimated based on the child's height. We review evidence supporting specific strategies to mitigate cervicocerebral arterial injury, including technique (stent retrieval vs direct aspiration) and device size selection. The importance of and strategies for minimizing blood loss, radiation exposure, and contrast administration are reviewed. Attention to these technical limitations is critical to delivering the safest possible care when thrombectomy is being considered for children with acute stroke.
Collapse
Affiliation(s)
- Lisa R Sun
- Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dana Harrar
- Neurology, Children's National Hospital, Washington, District of Columbia, USA
| | - Gerald Drocton
- Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Philippe Gailloud
- Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monica S Pearl
- Radiology, Children's National Hospital, Washington, District of Columbia, USA.,Radiology and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Sankaran S, Saharia GK, Naik S, Mangaraj M. Effect of Iodinated Contrast Media on Serum Electrolyte Concentrations in Patients Undergoing Routine Contrast Computed Tomography Scan Procedure. Int J Appl Basic Med Res 2019; 9:217-220. [PMID: 31681546 PMCID: PMC6822316 DOI: 10.4103/ijabmr.ijabmr_69_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 07/29/2019] [Indexed: 12/01/2022] Open
Abstract
Background and Objectives: Being hypertonic solutions, iodinated contrast media such as iohexol can cause a shift of fluids and electrolytes between different compartments of the body, but there is an ongoing discrepancy in data and current studies as to the effect of iodinated contrast media on serum electrolytes. Hence, this hospital-based prospective clinical observational study was carried out with objectives of evaluating the changes in serum electrolyte concentrations with intravenous iodinated contrast media administration in adult population and to correlate the changes in electrolyte concentrations, if any, with the demographic profile of the patients. Materials and Methods: We analyzed 103 numbers of adult patient samples over a period of 2 months by collecting blood both before administration of contrast and after 24 h of the contrast-enhanced computed tomography scan procedure. Serum concentrations of sodium, potassium, chloride, and ionized calcium were measured using Eschweiler Combiline analyzer based on ion-selective electrode principle. Results: The mean age of the study population in our study was 40.11 ± 20.51 years. We found that changes in serum sodium and chloride concentration after administration of contrast media are significant (sodium: 136.29 ± 3.53 vs. 132.49 ± 6.36 mmol/L and chloride: 100.03 ± 0.70 vs. 97.53 ± 0.70 mmol/L). Sodium concentration shows more decrease in females compared to males after administration of iodine contrast. The most probable reason for this decrease in serum electrolytes was secondary changes to hemodilution due to high osmolality of the contrast. Conclusions: Attending physicians must be alert for such possibilities of changes in electrolytes after contrast administration and be prepared to treat any adversity if one occurs.
Collapse
Affiliation(s)
- Sindhu Sankaran
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Gautom Kumar Saharia
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Suprava Naik
- Department of Radiodiagnosis, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Manaswini Mangaraj
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Krasilnikova AA, Solovieva AO, Ivanov AA, Brylev KA, Pozmogova TN, Gulyaeva MA, Kurskaya OG, Alekseev AY, Shestopalov AM, Shestopalova LV, Poveshchenko AF, Efremova OA, Mironov YV, Shestopalov MA. A comparative study of hydrophilic phosphine hexanuclear rhenium cluster complexes' toxicity. Toxicol Res (Camb) 2017; 6:554-560. [PMID: 30090524 PMCID: PMC6060950 DOI: 10.1039/c7tx00083a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
The octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to the difficulty in controlling the hydrolysis of the initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring the fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that the cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with the fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6].
Collapse
Affiliation(s)
- Anna A Krasilnikova
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Anastasiya O Solovieva
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Anton A Ivanov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Tatiana N Pozmogova
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Marina A Gulyaeva
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Olga G Kurskaya
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Alexander Y Alekseev
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Alexander M Shestopalov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Lidiya V Shestopalova
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Alexander F Poveshchenko
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Olga A Efremova
- Department of Chemistry , University of Hull , Cottingham Road , Hull , HU6 7RX , UK . ; Tel: +44 (0)1482 465417
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Michael A Shestopalov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| |
Collapse
|