1
|
Xu WY, Liu SS, Guo XH, Wang P, Li CY, Liao L, Qin QL. Increase of ATP synthesis and amino acids absorption contributes to cold adaptation in Antarctic bacterium Poseidonibacter antarcticus SM1702 T. Extremophiles 2024; 29:3. [PMID: 39576362 DOI: 10.1007/s00792-024-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Numerous psychrophiles inhabit the cold environments that are prevalent across the global biosphere. The adaptation of psychrophiles to cold conditions has been widely studied in strains from the archaeal phylum Euryarchaeota and the bacterial class Gamma-proteobacteria. However, given the vast diversity of microorganisms in cold environments, many microbial lineages with potentially unique cold-adaptation strategies remain largely unexplored. This study investigates the cold responses of the Antarctic strain Poseidonibacter antarcticus SM1702T, a cold-adapted bacterium belonging to the class Epsilon-proteobacteria within the phylum Campylobacterota. Proteomic analysis revealed that this strain responds to low temperatures by overexpressing proteins involved in energy production and amino acid transport. Experimental results confirmed that intracellular ATP concentrations increased at low temperatures compared to higher temperatures. Low temperatures significantly reduced the strain's amino acid absorption rates, a condition that was mitigated by increased expression of membrane transporters. We propose that the impairment of membrane protein function due to low temperatures is the primary factor affecting cell growth. As a result, the strain enhances ATP synthesis and upregulates membrane transporter expression to counteract cold stress. These findings contribute to a deeper understanding of cold adaptation strategies in psychrophiles.
Collapse
Affiliation(s)
- Wen-Yue Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Han Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Li Liao
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, People's Republic of China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
Zhang W, Ren D, Li Z, Yue L, Whitman WB, Dong X, Li J. Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon. Nucleic Acids Res 2023; 51:7851-7867. [PMID: 37439380 PMCID: PMC10450193 DOI: 10.1093/nar/gkad575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
4
|
Hocher A, Borrel G, Fadhlaoui K, Brugère JF, Gribaldo S, Warnecke T. Growth temperature and chromatinization in archaea. Nat Microbiol 2022; 7:1932-1942. [PMID: 36266339 PMCID: PMC7613761 DOI: 10.1038/s41564-022-01245-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
DNA in cells is associated with proteins that constrain its structure and affect DNA-templated processes including transcription and replication. HU and histones are the main constituents of chromatin in bacteria and eukaryotes, respectively, with few exceptions. Archaea, in contrast, have diverse repertoires of nucleoid-associated proteins (NAPs). To analyse the evolutionary and ecological drivers of this diversity, we combined a phylogenomic survey of known and predicted NAPs with quantitative proteomic data. We identify the Diaforarchaea as a hotbed of NAP gain and loss, and experimentally validate candidate NAPs in two members of this clade, Thermoplasma volcanium and Methanomassiliicoccus luminyensis. Proteomic analysis across a diverse sample of 19 archaea revealed that NAP investment varies from <0.03% to >5% of total protein. This variation is predicted by growth temperature. We propose that high levels of chromatinization have evolved as a mechanism to prevent uncontrolled helix denaturation at higher temperatures, with implications for the origin of chromatin in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Khaled Fadhlaoui
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Jean-François Brugère
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
5
|
Centurion VB, Campanaro S, Basile A, Treu L, Oliveira VM. Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiol Res 2022; 265:127197. [PMID: 36174355 DOI: 10.1016/j.micres.2022.127197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| | - S Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
| | - A Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - L Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
6
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|
7
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
8
|
|
9
|
Yang HJ, Yang ZM, Xu XH, Guo RB. Increasing the methane production rate of hydrogenotrophic methanogens using biochar as a biocarrier. BIORESOURCE TECHNOLOGY 2020; 302:122829. [PMID: 32028147 DOI: 10.1016/j.biortech.2020.122829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The existence of CO2 in biogas will affect its practicality, so the methanation of CO2 is of great significance. Carrier materials play a key role in bioconversion of CO2 to methane during biogas upgrading. Herein, different materials were used to evaluate the bioconversion process of CO2 to methane, which consisted of black ceramsite (BC) and biochars prepared from corn straw and digestate. The results showed that after adding the carrier materials, the methane production rate increased by more than 20%, and the corn straw biochar (CSB) group even increased by more than 70%. This may be attributed to the large specific surface area and more functional groups in corn straw biochar which was suitable for the immobilization of hydrogenotrophic methanogens (HMs). Therefore, corn straw biochar is a good carrier material for the accelerated bioconversion of CO2 to methane.
Collapse
Affiliation(s)
- Hao-Jie Yang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhi-Man Yang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiao-Hui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian 116023, PR China.
| |
Collapse
|
10
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones 2019; 24:351-368. [PMID: 30649671 PMCID: PMC6439030 DOI: 10.1007/s12192-019-00969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Shazilah Kamaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Metabolic fingerprints of Serratia liquefaciens under simulated Martian conditions using Biolog GN2 microarrays. Sci Rep 2018; 8:15721. [PMID: 30356072 PMCID: PMC6200771 DOI: 10.1038/s41598-018-33856-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/07/2018] [Indexed: 01/28/2023] Open
Abstract
Microorganisms growing at atmospheric pressures of 0.7 kPa may have a significant impact on the search for life on Mars. Data on their nutrient requirements in a simulated Martian environment are required to ascertain both the potential risk of forward contamination and the potential of past or present habitability of Mars. Serratia liquefaciens can grow at concomitant conditions of low pressure, low temperature, and anoxic atmosphere. Changes in the metabolic fingerprint of S. liquefaciens grown under varying physical conditions including diverse atmospheric pressures (0.7 kPa to 101.3 kPa), temperatures (30 °C or 0 °C), and atmospheric gas compositions (Earth or CO2) were investigated using Biolog GN2 assays. Distinct patterns for each condition were observed. Above 10 kPa S. liquefaciens performed similar to Earth-normal pressure conditions (101.3 kPa) whereas below 10 kPa shifts in metabolic patterns were observed. The differences indicated a physiological alteration in which S. liquefaciens lost its ability to metabolize the majority of the provided carbon sources at 0.7 kPa with a significant decrease in the oxidation of amino acids. By measuring the physiological responses to different carbon sources we were able to identify nutritional constraints that support cellular replication under simulated shallow Mars subsurface conditions.
Collapse
|
13
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative Transcriptomics of Cold Growth and Adaptive Features of a Eury- and Steno-Psychrophile. Front Microbiol 2018; 9:1565. [PMID: 30108551 PMCID: PMC6080646 DOI: 10.3389/fmicb.2018.01565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Permafrost subzero environments harbor diverse, active communities of microorganisms. However, our understanding of the subzero growth, metabolisms, and adaptive properties of these microbes remains very limited. We performed transcriptomic analyses on two subzero-growing permafrost isolates with different growth profiles in order to characterize and compare their cold temperature growth and cold-adaptive strategies. The two organisms, Rhodococcus sp. JG3 (-5 to 30°C) and Polaromonas sp. Eur3 1.2.1 (-5 to 22°C), shared several common responses during low temperature growth, including induction of translation and ribosomal processes, upregulation of nutrient transport, increased oxidative and osmotic stress responses, and stimulation of polysaccharide capsule synthesis. Recombination appeared to be an important adaptive strategy for both isolates at low temperatures, likely as a mechanism to increase genetic diversity and the potential for survival in cold systems. While Rhodococcus sp. JG3 favored upregulating iron and amino acid transport, sustaining redox potential, and modulating fatty acid synthesis and composition during growth at -5°C compared to 25°C, Polaromonas sp. Eur3 1.2.1 increased the relative abundance of transcripts involved in primary energy metabolism and the electron transport chain, in addition to signal transduction and peptidoglycan synthesis at 0°C compared to 20°C. The increase in energy metabolism may explain why Polaromonas sp. Eur3 1.2.1 is able to sustain growth rates at 0°C comparable to those at higher temperatures. For Rhodococcus sp. JG3, flexibility in use of carbon sources, iron acquisition, control of membrane fatty acid composition, and modulating redox and co-factor potential may be ways in which this organism is able to sustain growth over a wider range of temperatures. Increasing our understanding of the microbes in these habitats helps us better understand active pathways and metabolisms in extreme environments. Identifying novel, thermolabile, and cold-active enzymes from studies such as this is also of great interest to the biotechnology and food industries.
Collapse
Affiliation(s)
| | - Julien Tremblay
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
15
|
Almeida-Dalmet S, Litchfield CD, Gillevet P, Baxter BK. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes (Basel) 2018; 9:genes9010052. [PMID: 29361787 PMCID: PMC5793203 DOI: 10.3390/genes9010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.
Collapse
Affiliation(s)
- Swati Almeida-Dalmet
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Carol D Litchfield
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Patrick Gillevet
- Department of Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA.
| |
Collapse
|
16
|
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H. BMC Genomics 2018; 19:24. [PMID: 29304737 PMCID: PMC5756330 DOI: 10.1186/s12864-017-4415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5′-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. Results Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). Conclusions This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4415-x) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 2017; 19:4460-4479. [PMID: 28834033 DOI: 10.1111/1462-2920.13893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
Abstract
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to -15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and -10°C with 12% w/v NaCl. Many proteins with increased abundances at -10°C versus 23°C also increased at 23C-salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at -10°C, including PlsX and KASII (FA metabolism), DD-transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At -10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.
Collapse
Affiliation(s)
- Isabelle Raymond-Bouchard
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Ianina Altshuler
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Lyle G Whyte
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
18
|
Zhang B, Yue L, Zhou L, Qi L, Li J, Dong X. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity. Front Microbiol 2017; 8:1597. [PMID: 28878753 PMCID: PMC5572242 DOI: 10.3389/fmicb.2017.01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Cold shock proteins (Csps) enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066) exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C), while the fourth (Mpsy_2002) was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066) and TRAM2002 (gene product of Mpsy_2002) displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China.,School of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China.,School of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Liguang Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China.,School of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China.,School of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China.,School of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
19
|
Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I. A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017; 46:23-32. [DOI: 10.1016/j.anaerobe.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
20
|
Williams TJ, Liao Y, Ye J, Kuchel RP, Poljak A, Raftery MJ, Cavicchioli R. Cold adaptation of the Antarctic haloarchaea
Halohasta litchfieldiae
and
Halorubrum lacusprofundi. Environ Microbiol 2017; 19:2210-2227. [DOI: 10.1111/1462-2920.13705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Yan Liao
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Jun Ye
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
- Centre for Marine Bio‐InnovationThe University of New South WalesSydney New South Wales2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy UnitThe University of New South WalesSydney New South Wales2052 Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| |
Collapse
|
21
|
Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. BIORESOURCE TECHNOLOGY 2017; 225:429-437. [PMID: 27931939 DOI: 10.1016/j.biortech.2016.11.124] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 05/24/2023]
Abstract
Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor.
Collapse
Affiliation(s)
- Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), Viale dell'Università, 16, 35020 Legnaro (Padova), Italy
| | | | - Kanokwan Boe
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
22
|
Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii. Sci Rep 2016; 6:24278. [PMID: 27052690 PMCID: PMC4823666 DOI: 10.1038/srep24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 01/18/2023] Open
Abstract
Cold environments dominate the Earth’s biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0–4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (−2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.
Collapse
|
23
|
Taha, Siddiqui KS, Campanaro S, Najnin T, Deshpande N, Williams TJ, Aldrich‐Wright J, Wilkins M, Curmi PMG, Cavicchioli R. Single
TRAM
domain
RNA
‐binding proteins in
A
rchaea
: functional insight from
C
tr3 from the
A
ntarctic methanogen
M
ethanococcoides burtonii. Environ Microbiol 2016; 18:2810-24. [DOI: 10.1111/1462-2920.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Taha
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - K. S. Siddiqui
- Life Sciences Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | - S. Campanaro
- Department of Biology University of Padua Via U. Bassi 58/B 35121 Padova Italy
| | - T. Najnin
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - N. Deshpande
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - T. J. Williams
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - J. Aldrich‐Wright
- Nanoscale Organization and Dynamic Group School of Science and Health Western Sydney University Penrith 2560 NSW Australia
| | - M. Wilkins
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - P. M. G. Curmi
- School of Physics The University of New South Wales Sydney NSW 2052 Australia
| | - R. Cavicchioli
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
24
|
Li J, Qi L, Guo Y, Yue L, Li Y, Ge W, Wu J, Shi W, Dong X. Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci Rep 2015; 5:9209. [PMID: 25784521 PMCID: PMC5378194 DOI: 10.1038/srep09209] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/12/2022] Open
Abstract
Psychrophilic methanogenic Archaea contribute significantly to global methane emissions, but archaeal cold adaptation mechanisms remain poorly understood. Hinted by that mRNA architecture determined secondary structure respond to cold more promptly than proteins, differential RNA-seq was used in this work to examine the genome-wide transcription start sites (TSSs) of the psychrophilic methanogen Methanolobus psychrophilus R15 and its response to cold. Unlike most prokaryotic mRNAs with short 5' untranslated regions (5' UTR, median lengths of 20-40 nt), 51% mRNAs of this methanogen have large 5' UTR (>50 nt). For 24% of the mRNAs, the 5' UTR is >150 nt. This implies that post-transcriptional regulation may be significance in the psychrophile. Remarkably, 219 (14%) genes possessed multiple gene TSSs (gTSSs), and 84 genes exhibited temperature-regulated gTSS selection to express alternative 5' UTR. Primer extension studies confirmed the temperature-dependent TSS selection and a stem-loop masking of ribosome binding sites was predicted from the longer 5' UTRs, suggesting alternative 5' UTRs-mediated translation regulation in the cold adaptation as well. In addition, 195 small RNAs (sRNAs) were detected, and Northern blots confirmed that many sRNAs were induced by cold. Thus, this study revealed an integrated transcriptional and post-transcriptional regulation for cold adaptation in a psychrophilic methanogen.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Yang Guo
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Yanping Li
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Weizhen Ge
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Jun Wu
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Wenyuan Shi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 10833 Le Conte Avenue, Los Angeles, CA90095, USA
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| |
Collapse
|
25
|
Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K. Proteomics of Colwellia psychrerythraea at subzero temperatures - a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 2015; 17:2319-35. [PMID: 25471130 DOI: 10.1111/1462-2920.12691] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022]
Abstract
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (-1, and -10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]-leucine and [3H]-thymidine incubations indicated active protein and DNA synthesis to -10°C. Mass spectrometry-based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo-taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold-adapted marine organisms to sustain cellular function in their habitat.
Collapse
Affiliation(s)
- Brook L Nunn
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Krystal V Slattery
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Karen A Cameron
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Karen Junge
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
Proteomic insights into the temperature responses of a cold-adaptive archaeon Methanolobus psychrophilus R15. Extremophiles 2014; 19:249-59. [DOI: 10.1007/s00792-014-0709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
27
|
Sardu A, Treu L, Campanaro S. Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics 2014; 15:1045. [PMID: 25441755 PMCID: PMC4302112 DOI: 10.1186/1471-2164-15-1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022] Open
Abstract
Background RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains. Results In order to fill this gap, an innovative software called ORA (Overlapped Reads Assembler) was developed. This software allows a simple and reliable analysis of the transcriptome structure in organisms with a low number of introns. It can also determine the size and the position of the untranslated regions (UTR) and of polycistronic transcripts. As a case study, we analyzed the transcriptional landscape of six S. cerevisiae strains in two different key steps of the fermentation process. This comparative analysis revealed differences in the UTR regions of transcripts. By extending the transcriptome analysis to yeast species belonging to the Saccharomyces genus, it was possible to examine the conservation level of unknown non-coding RNAs and their putative functional role. Conclusions By comparing the results obtained using ORA with previous studies and with the transcriptome structure determined with other software, it was proven that ORA has a remarkable reliability. The results obtained from the training set made it possible to detect the presence of transcripts with variable UTRs between S. cerevisiae strains. Finally, we propose a regulatory role for some non-coding transcripts conserved within the Saccharomyces genus and localized in the antisense strand to genes involved in meiosis and cell wall biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1045) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Stefano Campanaro
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
28
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
29
|
De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 2014; 15:508-17. [PMID: 24671034 DOI: 10.1002/embr.201338170] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Much of the Earth's surface, both marine and terrestrial, is either periodically or permanently cold. Although habitats that are largely or continuously frozen are generally considered to be inhospitable to life, psychrophilic organisms have managed to survive in these environments. This is attributed to their innate adaptive capacity to cope with cold and its associated stresses. Here, we review the various environmental, physiological and molecular adaptations that psychrophilic microorganisms use to thrive under adverse conditions. We also discuss the impact of modern "omic" technologies in developing an improved understanding of these adaptations, highlighting recent work in this growing field.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | |
Collapse
|
30
|
Ghobakhlou A, Laberge S, Antoun H, Wishart DS, Xia J, Krishnamurthy R, Mandal R. Metabolomic analysis of cold acclimation of Arctic Mesorhizobium sp. strain N33. PLoS One 2013; 8:e84801. [PMID: 24386418 PMCID: PMC3875568 DOI: 10.1371/journal.pone.0084801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 11/19/2013] [Indexed: 01/31/2023] Open
Abstract
Arctic Mesorhizobium sp. N33 isolated from nodules of Oxytropis arctobia in Canada's eastern Arctic has a growth temperature range from 0 °C to 30 °C and is a well-known cold-adapted rhizobia. The key molecular mechanisms underlying cold adaptation in Arctic rhizobia remains totally unknown. Since the concentration and contents of metabolites are closely related to stress adaptation, we applied GC-MS and NMR to identify and quantify fatty acids and water soluble compounds possibly related to low temperature acclimation in strain N33. Bacterial cells were grown at three different growing temperatures (4 °C, 10 °C and 21 °C). Cells from 21 °C were also cold-exposed to 4°C for different times (2, 4, 8, 60 and 240 minutes). We identified that poly-unsaturated linoleic acids 18:2 (9, 12) & 18:2 (6, 9) were more abundant in cells growing at 4 or 10 °C, than in cells cultivated at 21 °C. The mono-unsaturated phospho/neutral fatty acids myristoleic acid 14:1(11) were the most significantly overexpressed (45-fold) after 1 hour of exposure to 4 °C. As reported in the literature, these fatty acids play important roles in cold adaptability by supplying cell membrane fluidity, and by providing energy to cells. Analysis of water-soluble compounds revealed that isobutyrate, sarcosine, threonine and valine were more accumulated during exposure to 4 °C. These metabolites might play a role in conferring cold acclimation to strain N33 at 4 °C, probably by acting as cryoprotectants. Isobutyrate was highly upregulated (19.4-fold) during growth at 4 °C, thus suggesting that this compound is a precursor for the cold-regulated fatty acids modification to low temperature adaptation.
Collapse
Affiliation(s)
- Abdollah Ghobakhlou
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, Quebec, Canada
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
| | - Serge Laberge
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, Quebec, Canada
| | - Hani Antoun
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- National Research Council, National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| | - Jianguo Xia
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Dhaunta N, Arora K, Chandrayan SK, Guptasarma P. Introduction of a thermophile-sourced ion pair network in the fourth beta/alpha unit of a psychophile-derived triosephosphate isomerase from Methanococcoides burtonii significantly increases its kinetic thermal stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1023-33. [DOI: 10.1016/j.bbapap.2013.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 12/07/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
32
|
Contribution of transcriptomics to systems-level understanding of methanogenic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:586369. [PMID: 23533330 PMCID: PMC3600222 DOI: 10.1155/2013/586369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/24/2012] [Accepted: 01/23/2013] [Indexed: 01/25/2023]
Abstract
Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic constraints of methanogenesis alone or in syntrophic metabolism, methanogens must carefully regulate their catabolic pathways including the regulation of RNA transcripts. The transcriptome is a dynamic and important control point in microbial systems. This paper assesses the impact of mRNA (transcriptome) studies on the understanding of methanogenesis with special consideration given to how methanogenesis is regulated to cope with nutrient limitation, environmental variability, and interactions with syntrophic partners. In comparison with traditional microarray-based transcriptome analyses, next-generation high-throughput RNA sequencing is greatly advantageous in assessing transcription start sites, the extent of 5′ untranslated regions, operonic structure, and the presence of small RNAs. We are still in the early stages of understanding RNA regulation but it is already clear that determinants beyond transcript abundance are highly relevant to the lifestyles of methanogens, requiring further study.
Collapse
|
33
|
Micro-eukaryotic diversity in hypolithons from miers valley, antarctica. BIOLOGY 2013; 2:331-40. [PMID: 24832664 PMCID: PMC4009862 DOI: 10.3390/biology2010331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 01/09/2023]
Abstract
The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts.
Collapse
|
34
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
35
|
Chen Z, Yu H, Li L, Hu S, Dong X. The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:633-641. [PMID: 23760934 DOI: 10.1111/j.1758-2229.2012.00389.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 06/30/2012] [Accepted: 08/23/2012] [Indexed: 06/02/2023]
Abstract
We analysed the cold-responsive gene repertoire for a psychrophilic methanogen, Methanolobus psychrophilus R15 through genomic and RNA-seq assayed transcriptomic comparisons for cultures at 18°C (optimal temperature) versus 4°C. The differences found by RNA-seq analysis were verified using quantitative real time-PCR assay. The results showed that as in the Antarctic methanogen, Methanococcoides burtonii, genes for methanogenesis, biosynthesis and protein synthesis were all downregulated by the cold in R15. However, the RNA polymerase complex was upregulated at cold, as well as a gene cluster for a putative exosome complex, suggesting that exosome-mediated RNA decay may be cold-accelerated. Unexpectedly, the chaperonin genes for both thermosome and GroES/EL were all upregulated at 4°C. Strain R15 possessed eight protein families for oxygen detoxification, including both anaerobe-specific superoxide reductase (SOR) and the aerobe-typical superoxide dismutase (SOD)-catalase oxidant-removing system, implying the higher oxidative tolerance. Compared with a mesophilic methanogen, R15 survived in higher paraquat, a redox-cycling drug. Moreover, 71 one-component systems and 50 two-component systems for signal transduction ranked strain R15, together with M. burtonii, as being highly adaptive among archaea. Most of them exhibited cold-enhanced expression, indicating their involvement in cold adaptation. This study has added new perspectives on the cold adaptation of methanogenic archaea.
Collapse
Affiliation(s)
- Zijuan Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
36
|
Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environ Microbiol 2012. [DOI: 10.1111/1462-2920.12035] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Campanaro S, Pascale FD, Telatin A, Schiavon R, Bartlett DH, Valle G. The transcriptional landscape of the deep-sea bacterium Photobacterium profundum in both a toxR mutant and its parental strain. BMC Genomics 2012; 13:567. [PMID: 23107454 PMCID: PMC3505737 DOI: 10.1186/1471-2164-13-567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/16/2012] [Indexed: 02/08/2023] Open
Abstract
Background The deep-sea bacterium Photobacterium profundum is an established model for studying high pressure adaptation. In this paper we analyse the parental strain DB110 and the toxR mutant TW30 by massively parallel cDNA sequencing (RNA-seq). ToxR is a transmembrane DNA-binding protein first discovered in Vibrio cholerae, where it regulates a considerable number of genes involved in environmental adaptation and virulence. In P. profundum the abundance and activity of this protein is influenced by hydrostatic pressure and its role is related to the regulation of genes in a pressure-dependent manner. Results To better characterize the ToxR regulon, we compared the expression profiles of wt and toxR strains in response to pressure changes. Our results revealed a complex expression pattern with a group of 22 genes having expression profiles similar to OmpH that is an outer membrane protein transcribed in response to high hydrostatic pressure. Moreover, RNA-seq allowed a deep characterization of the transcriptional landscape that led to the identification of 460 putative small RNA genes and the detection of 298 protein-coding genes previously unknown. We were also able to perform a genome-wide prediction of operon structure, transcription start and termination sites, revealing an unexpected high number of genes (992) with large 5′-UTRs, long enough to harbour cis-regulatory RNA structures, suggesting a correlation between intergenic region size and UTR length. Conclusion This work led to a better understanding of high-pressure response in P. profundum. Furthermore, the high-resolution RNA-seq analysis revealed several unexpected features about transcriptional landscape and general mechanisms of controlling bacterial gene expression.
Collapse
Affiliation(s)
- Stefano Campanaro
- Department of Biology and CRIBI Biotechnology Centre, University of Padua, Via Ugo Bassi 58/B, Padova 35131, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Daniels C, Michán C, Ramos JL. Cold is cool, the human microbiota and taking multiple SIPs. Microb Biotechnol 2011; 4:554-7. [PMID: 21848612 PMCID: PMC3819006 DOI: 10.1111/j.1751-7915.2011.00287.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Craig Daniels
- Structural Proteomics in Toronto, UHN and University of Toronto, Banting and Best Department of Medical Research, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum equitans--Ignicoccus hospitalis relationship. PLoS One 2011; 6:e22942. [PMID: 21826220 PMCID: PMC3149612 DOI: 10.1371/journal.pone.0022942] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/01/2011] [Indexed: 12/05/2022] Open
Abstract
Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis.
Collapse
|
41
|
Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PMG. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Environ Microbiol 2011; 13:2232-49. [PMID: 21477108 DOI: 10.1111/j.1462-2920.2011.02477.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Archaea are abundant in permanently cold environments. The Antarctic methanogen, Methanococcoides burtonii, has proven an excellent model for studying molecular mechanisms of cold adaptation. Methanococcoides burtonii contains three group II chaperonins that diverged prior to its closest orthologues from mesophilic Methanosarcina spp. The relative abundance of the three chaperonins shows little dependence on organism growth temperature, except at the highest temperatures, where the most thermally stable chaperonin increases in abundance. In vitro and in vivo, the M. burtonii chaperonins are predominantly monomeric, with only 23-33% oligomeric, thereby differing from other archaea where an oligomeric ring form is dominant. The crystal structure of an N-terminally truncated chaperonin reveals a monomeric protein with a fully open nucleotide binding site. When compared with closed state group II chaperonin structures, a large-scale ≈ 30° rotation between the equatorial and intermediate domains is observed resulting in an open nucleotide binding site. This is analogous to the transition observed between open and closed states of group I chaperonins but contrasts with recent archaeal group II chaperonin open state ring structures. The predominance of monomeric form and the ability to adopt a fully open nucleotide site appear to be unique features of the M. burtonii group II chaperonins.
Collapse
Affiliation(s)
- Oliver Pilak
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R. Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 2011; 13:2186-203. [PMID: 21443741 DOI: 10.1111/j.1462-2920.2011.02467.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Piette F, Struvay C, Feller G. The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 2011; 13:1924-33. [PMID: 21366816 DOI: 10.1111/j.1462-2920.2011.02436.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein folding process in psychrophiles is impaired by low temperature, which exerts several physicochemical constraints, such as a decrease in the folding rate, reduced molecular diffusion rates and increased solvent viscosity, which interfere with conformational sampling. Furthermore, folding assistance is required at various folding steps according to the protein size. Recent studies in the field have provided contrasting and sometimes contradictory results, although protein folding generally appears as a rate-limiting step for the growth of psychrophiles. It is proposed here that these discrepancies reflect the diverse adaptive strategies adopted by psychrophiles in order to allow efficient protein folding at low temperature. Cold adaptations apparently superimpose on pre-existing cellular organization, resulting in different adaptive strategies. In addition, microbial lifestyle further modulates the properties of the chaperone machinery, which possibly explains the occurrence of cold-adapted and non-cold-adapted protein chaperones in psychrophiles.
Collapse
Affiliation(s)
- Florence Piette
- Laboratory of Biochemistry, Center for Protein Engineering, University of Liège, Institute of Chemistry B6a, 4000 Liège-Sart Tilman, Belgium
| | | | | |
Collapse
|
44
|
De Francisci D, Campanaro S, Kornfeld G, Siddiqui KS, Williams TJ, Ertan H, Treu L, Pilak O, Lauro FM, Harrop SJ, Curmi PMG, Cavicchioli R. The RNA polymerase subunits E/F from the Antarctic archaeon Methanococcoides burtonii bind to specific species of mRNA. Environ Microbiol 2010; 13:2039-55. [DOI: 10.1111/j.1462-2920.2010.02385.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|