1
|
Ortega-Martínez P, Nikkanen L, Wey LT, Florencio FJ, Allahverdiyeva Y, Díaz-Troya S. Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:162-179. [PMID: 38706429 DOI: 10.1111/nph.19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
Collapse
Affiliation(s)
- Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| |
Collapse
|
2
|
Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. THE NEW PHYTOLOGIST 2016; 210:1229-43. [PMID: 26853530 DOI: 10.1111/nph.13870] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 05/24/2023]
Abstract
Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident.
Collapse
Affiliation(s)
- Haim Treves
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Simon M Berkowicz
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Alessandra Norici
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Itzhak Ohad
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Zilliges Y, Dau H. Unexpected capacity for organic carbon assimilation by Thermosynechococcus elongatus, a crucial photosynthetic model organism. FEBS Lett 2016; 590:962-70. [PMID: 26935247 DOI: 10.1002/1873-3468.12120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/07/2022]
Abstract
Genetic modification of key residues of photosystems is essential to identify functionally crucial processes by spectroscopic and crystallographic investigation; the required protein stability favours use of thermophilic species. The currently unique thermophilic photosynthetic model organism is the cyanobacterial genus Thermosynechococcus. We report the ability of Thermosynechococcus elongatus to assimilate organic carbon, specifically D-fructose. Growth in the presence of a photosynthesis inhibitor opens the door towards crucial amino acid substitutions in photosystems by the rescue of otherwise lethal mutations. Yet depression of batch-culture growth after 7 days implies that additional developments are needed.
Collapse
Affiliation(s)
- Yvonne Zilliges
- Institut für Experimentalphysik/Biophysik & Photosynthese, Freie Universität Berlin, Germany
| | - Holger Dau
- Institut für Experimentalphysik/Biophysik & Photosynthese, Freie Universität Berlin, Germany
| |
Collapse
|
4
|
A novel periplasmic protein (Slr0280) tunes photomixotrophic growth of the cyanobacterium, Synechocystis sp. PCC 6803. Gene 2016; 575:313-20. [DOI: 10.1016/j.gene.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022]
|
5
|
Biocrusts in the Context of Global Change. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_22] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Nishijima Y, Kanesaki Y, Yoshikawa H, Ogawa T, Sonoike K, Nishiyama Y, Hihara Y. Analysis of spontaneous suppressor mutants from the photomixotrophically grown pmgA-disrupted mutant in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:465-475. [PMID: 25869635 DOI: 10.1007/s11120-015-0143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
The pmgA-disrupted (ΔpmgA) mutant in the cyanobacterium Synechocystis sp. PCC 6803 suffers severe growth inhibition under photomixotrophic conditions. In order to elucidate the key factors enabling the cells to grow under photomixotrophic conditions, we isolated spontaneous suppressor mutants from the ΔpmgA mutant derived from a single colony. When the ΔpmgA mutant was spread on a BG11 agar plate supplemented with glucose, colonies of suppressor mutants appeared after the bleaching of the background cells. We identified the mutation site of these suppressor mutants and found that 11 mutants out of 13 had a mutation in genes related to the type 1 NAD(P)H dehydrogenase (NDH-1) complex. Among them, eight mutants had mutations within the ndhF3 (sll1732) gene: R32stop, W62stop, V147I, G266V, G354W, G586C, and deletion of 7 bp within the coding region. One mutant had one base insertion in the putative -10 box of the ndhC (slr1279) gene, leading to the decrease in the transcripts of the ndhCKJ operon. Two mutants had one base insertion and deletion in the coding region of cupA (sll1734), which is co-transcribed with ndhF3 and ndhD3 and comprises together a form of NDH-1 complex (NDH-1MS complex) involved in inducible high-affinity CO2 uptake. The results indicate that the loss of the activity of this complex effectively rescues the ΔpmgA mutant under photomixotrophic condition with 1 % CO2. However, little difference among WT and mutants was observed in the activities ascribed to the NDH-1MS complex, i.e., CO2 uptake and cyclic electron transport. This may suggest that the NDH-1MS complex has the third, currently unknown function under photomixotrophic conditions.
Collapse
Affiliation(s)
- Yoshiki Nishijima
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yu Kanesaki
- Nodai Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- Nodai Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan.
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
7
|
Burnap RL, Hagemann M, Kaplan A. Regulation of CO2 Concentrating Mechanism in Cyanobacteria. Life (Basel) 2015; 5:348-71. [PMID: 25636131 PMCID: PMC4390856 DOI: 10.3390/life5010348] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci) uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific "regulatory metabolites" whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Martin Hagemann
- Institute Biosciences, Department Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, Rostock D-18059, Germany.
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Haimovich-Dayan M, Lieman-Hurwitz J, Orf I, Hagemann M, Kaplan A. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803? Environ Microbiol 2015; 17:1794-804. [PMID: 25297829 DOI: 10.1111/1462-2920.12638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved.
Collapse
Affiliation(s)
- Maya Haimovich-Dayan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
9
|
Nagarajan S, Srivastava S, Sherman LA. Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Mol Microbiol 2013; 91:79-97. [PMID: 24237382 DOI: 10.1111/mmi.12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The plasmid hik31 operon (P3, slr6039-slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon and nitrogen sources partly alleviated the defects of the mutant in the dark. Electron micrographs of the mutant revealed larger cells with division defects, glycogen limitation, lack of carboxysomes, deteriorated thylakoids and accumulation of polyhydroxybutyrate and cyanophycin. A microarray experiment over two days of growth in light-dark plus glucose revealed downregulation of several photosynthesis, amino acid biosynthesis, energy metabolism genes; and an upregulation of cell envelope and transport and binding genes in the mutant. ΔP3 had an imbalance in carbon and nitrogen levels and many sugar catabolic and cell division genes were negatively affected after the first dark period. The mutant suffered from oxidative and osmotic stress, macronutrient limitation, and an energy deficit. Therefore, the P3 operon is an important regulator of central metabolism and cell division in the dark.
Collapse
Affiliation(s)
- Sowmya Nagarajan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
10
|
Schwarz D, Schubert H, Georg J, Hess WR, Hagemann M. The gene sml0013 of Synechocystis species strain PCC 6803 encodes for a novel subunit of the NAD(P)H oxidoreductase or complex I that is ubiquitously distributed among Cyanobacteria. PLANT PHYSIOLOGY 2013; 163:1191-202. [PMID: 24089436 PMCID: PMC3813643 DOI: 10.1104/pp.113.224287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/01/2013] [Indexed: 05/21/2023]
Abstract
The NAD(P)H oxidoreductase or complex I (NDH1) complex participates in many processes such as respiration, cyclic electron flow, and inorganic carbon concentration in the cyanobacterial cell. Despite immense progress in our understanding of the structure-function relation of the cyanobacterial NDH1 complex, the subunits catalyzing NAD(P)H docking and oxidation are still missing. The gene sml0013 of Synechocystis 6803 encodes for a small protein of unknown function for which homologs exist in all completely known cyanobacterial genomes. The protein exhibits weak similarities to the NDH-dependent flow6 (NDF6) protein, which was reported from Arabidopsis (Arabidopsis thaliana) chloroplasts as a NDH subunit. An sml0013 inactivation mutant of Synechocystis 6803 was generated and characterized. It showed only weak differences regarding growth and pigmentation in various culture conditions; most remarkably, it exhibited a glucose-sensitive phenotype in the light. The genome-wide expression pattern of the Δsml0013::Km mutant was almost identical to the wild type when grown under high CO2 conditions as well as after shifts to low CO2 conditions. However, measurements of the photosystem I redox kinetic in cells of the Δsml0013::Km mutant revealed differences, such as a decreased capability of cyclic electron flow as well as electron flow into respiration in comparison with the wild type. These results suggest that the Sml0013 protein (named NdhP) represents a novel subunit of the cyanobacterial NDH1 complex, mediating its coupling either to the respiratory or the photosynthetic electron flow.
Collapse
|
11
|
Ding X, Matsumoto T, Gena P, Liu C, Pellegrini-Calace M, Zhong S, Sun X, Zhu Y, Katsuhara M, Iwasaki I, Kitagawa Y, Calamita G. Water and CO2permeability of SsAqpZ, the cyanobacteriumSynechococcussp. PCC7942 aquaporin. Biol Cell 2013; 105:118-28. [DOI: 10.1111/boc.201200057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/22/2012] [Indexed: 01/14/2023]
|
12
|
Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Kuske CR. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 2012; 14:3247-58. [DOI: 10.1111/1462-2920.12011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/11/2012] [Accepted: 09/28/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Blaire Steven
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| | | | - Chris M. Yeager
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| | - Jayne Belnap
- US Geological Service; Southwest Biological Science Center; Moab; UT; 84532; USA
| | - R. David Evans
- School of Biological Sciences; Washington State University; Pullman; WA; 99163; USA
| | - Cheryl R. Kuske
- Bioscience Division; Los Alamos National Laboratory; Los Alamos; NM; 87545; USA
| |
Collapse
|
13
|
Aquaporin AqpZ is involved in cell volume regulation and sensitivity to osmotic stress in Synechocystis sp. strain PCC 6803. J Bacteriol 2012; 194:6828-36. [PMID: 23043001 DOI: 10.1128/jb.01665-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The moderately halotolerant cyanobacterium Synechocystis sp. strain PCC 6803 contains a plasma membrane aquaporin, AqpZ. We previously reported that AqpZ plays a role in glucose metabolism under photomixotrophic growth conditions, suggesting involvement of AqpZ in cytosolic osmolarity homeostasis. To further elucidate the physiological role of AqpZ, we have studied its gene expression profile and its function in Synechocystis. The expression level of aqpZ was regulated by the circadian clock. AqpZ activity was insensitive to mercury in Xenopus oocytes and in Synechocystis, indicating that the AqpZ can be categorized as a mercury-insensitive aquaporin. Stopped-flow light-scattering spectrophotometry showed that addition of sorbitol and NaCl led to a slower decrease in cell volume of the Synechocystis ΔaqpZ strain than the wild type. The ΔaqpZ cells were more tolerant to hyperosmotic shock by sorbitol than the wild type. Consistent with this, recovery of oxygen evolution after a hyperosmotic shock by sorbitol was faster in the ΔaqpZ strain than in the wild type. In contrast, NaCl stress had only a small effect on oxygen evolution. The amount of AqpZ protein remained unchanged by the addition of sorbitol but decreased after addition of NaCl. This decrease is likely to be a mechanism to alleviate the effects of high salinity on the cells. Our results indicate that Synechocystis AqpZ functions as a water transport system that responds to daily oscillations of intracellular osmolarity.
Collapse
|
14
|
Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. J Bacteriol 2011; 194:448-59. [PMID: 22081400 DOI: 10.1128/jb.06207-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two closely related hik31 operons involved in signal transduction on the chromosome and the pSYSX plasmid in the cyanobacterium Synechocystis sp. strain PCC 6803. We studied the growth, cell morphology, and gene expression in operon and hik mutants for both copies, under different growth conditions, to examine whether the duplicated copies have the same or different functions and gene targets and whether they are similarly regulated. Phenotype analysis suggested that both operons regulated common and separate targets in the light and the dark. The chromosomal operon was involved in the negative control of autotrophic events, whereas the plasmid operon was involved in the positive control of heterotrophic events. Both the plasmid and double operon mutant cells were larger and had division defects. The growth data also showed a regulatory role for the chromosomal hik gene under high-CO(2) conditions and the plasmid operon under low-O(2) conditions. Metal stress experiments indicated a role for the chromosomal hik gene and operon in mediating Zn and Cd tolerance, the plasmid operon in Co tolerance, and the chromosomal operon and plasmid hik gene in Ni tolerance. We conclude that both operons are differentially and temporally regulated. We suggest that the chromosomal operon is the primarily expressed copy and the plasmid operon acts as a backup to maintain appropriate gene dosages. Both operons share an integrated regulatory relationship and are induced in high light, in glucose, and in active cell growth. Additionally, the plasmid operon is induced in the dark with or without glucose.
Collapse
|