1
|
Arend M, Ütkür K, Hawer H, Mayer K, Ranjan N, Adrian L, Brinkmann U, Schaffrath R. Yeast gene KTI13 (alias DPH8) operates in the initiation step of diphthamide synthesis on elongation factor 2. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:195-203. [PMID: 37662670 PMCID: PMC10468694 DOI: 10.15698/mic2023.09.804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
In yeast, Elongator-dependent tRNA modifications are regulated by the Kti11•Kti13 dimer and hijacked for cell killing by zymocin, a tRNase ribotoxin. Kti11 (alias Dph3) also controls modification of elongation factor 2 (EF2) with diphthamide, the target for lethal ADP-ribosylation by diphtheria toxin (DT). Diphthamide formation on EF2 involves four biosynthetic steps encoded by the DPH1-DPH7 network and an ill-defined KTI13 function. On further examining the latter gene in yeast, we found that kti13Δ null-mutants maintain unmodified EF2 able to escape ADP-ribosylation by DT and to survive EF2 inhibition by sordarin, a diphthamide-dependent antifungal. Consistently, mass spectrometry shows kti13Δ cells are blocked in proper formation of amino-carboxyl-propyl-EF2, the first diphthamide pathway intermediate. Thus, apart from their common function in tRNA modification, both Kti11/Dph3 and Kti13 share roles in the initiation step of EF2 modification. We suggest an alias KTI13/DPH8 nomenclature indicating dual-functionality analogous to KTI11/DPH3.
Collapse
Affiliation(s)
- Meike Arend
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Koray Ütkür
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Harmen Hawer
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Namit Ranjan
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
2
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
3
|
Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:840-51. [PMID: 25631371 DOI: 10.1111/plb.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.
Collapse
Affiliation(s)
- K Shahzad
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Rauf
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Ahmed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z A Malik
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - I Habib
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - K Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - R Ali
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - K Masmoudi
- International Centre for Biosaline Agriculture (ICBA), Dubai, UAE
| | - F Lemtiri-Chlieh
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - G A Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - N A Saeed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
4
|
Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet 2015; 11:e1005005. [PMID: 25973601 PMCID: PMC4431711 DOI: 10.1371/journal.pgen.1005005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. The rather wide-spread and extremely A/T rich yeast virus like elements (VLEs, also termed linear plasmids) which encode toxic anticodon nucleases (ACNases) ensure autoselection in the cytoplasm by preventing functional nuclear capture of the cognate immunity genes, but how? When expressed in the nucleus, the mRNA of the VLE immunity genes is split into fragments to which poly(A) tails are added. Consistently, lowering the A/T content by gene synthesis prevented transcript cleavage and permitted functional nuclear expression providing full immunity against the respective ACNase toxin. Thus, internal poly(A) cleavage is likely to prevent functional nuclear immunity gene expression.
Collapse
Affiliation(s)
- Alene Kast
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Raphael Voges
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Schroth
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | | | - Roland Klassen
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (FM)
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail: (RK); (FM)
| |
Collapse
|
5
|
Liu GL, Chi Z, Wang GY, Wang ZP, Li Y, Chi ZM. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol 2013; 35:222-34. [DOI: 10.3109/07388551.2013.833582] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Muccilli S, Wemhoff S, Restuccia C, Meinhardt F. Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 2012; 30:33-43. [PMID: 23148020 DOI: 10.1002/yea.2935] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022] Open
Abstract
Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.
Collapse
Affiliation(s)
- Serena Muccilli
- DISPA, Sezione di Tecnologia e Microbiologia degli Alimenti, University of Catania, Italy
| | | | | | | |
Collapse
|
7
|
Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 2012; 96:345-56. [PMID: 22899498 DOI: 10.1007/s00253-012-4349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
Abstract
A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the essential functions for their inheritance, and additional, dependent VLEs, which may encode a toxin-antitoxin system, generally referred to as killer toxin and immunity. In the two cases studied in depth, killer toxin action relies on chitin binding and hydrophobic domains, together allowing a separate toxic subunit to sneak into the target cell. Mechanistically, the latter sabotages codon-anticodon interaction by endonucleolytic cleavage of specific tRNAs 3' of the wobble nucleotide. This primary action provokes a number of downstream effects, including DNA damage accumulation, which contribute to the cell-killing efficiency and highlight the importance of proper transcript decoding capacity for other cellular processes than translation itself. Since wobble uridine modifications are crucial for efficient anticodon nuclease (ACNase) action of yeast killer toxins, the latter are valuable tools for the characterization of a surprisingly complex network regulating the addition of wobble base modifications in tRNA.
Collapse
Affiliation(s)
- Dhira Satwika
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149, Münster, Germany
| | | | | |
Collapse
|
8
|
Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. RNA toxins: mediators of stress adaptation and pathogen defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:890-903. [PMID: 21809449 DOI: 10.1002/wrna.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA toxins are a group of enzymes primarily synthesized by bacteria, fungi, and plants that either cleave or depurinate RNA molecules. These proteins may be divided according to their RNA substrates: ribotoxins are nucleases that cleave ribosomal RNA (rRNA), ribosome inactivating proteins are glycosidases that remove a base from rRNA, messenger RNA (mRNA) interferases are nucleases that cleave mRNAs, and anticodon nucleases cleave transfer RNAs (tRNAs). These modifications to the RNAs may substantially alter gene expression and translation rates. Given that some of these enzymes cause cell death, it has been suggested that they function mainly in defense, either to kill competing cells or to elicit suicide and thereby limit pathogen spread from infected cells. Although good correlations have been drawn between their enzymatic functions and toxicity, recent work has shown that some RNA toxins cause apoptosis in the absence of damage to RNA and that defense against pathogens can be achieved without host cell death. Moreover, a decrease in cellular translation rate, insufficient to cause cell death, allows some organisms to adapt to stress and environmental change. Although ascribing effects observed in vitro to the roles of these toxins in nature has been challenging, recent results have expanded our understanding of their modes of action, and emphasized the importance of these toxins in development, adaptation to stress and defense against pathogens.
Collapse
|
9
|
Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. EUKARYOTIC CELL 2009; 8:1521-31. [PMID: 19666779 DOI: 10.1128/ec.00110-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A 10-kb region of the nuclear genome of the yeast Vanderwaltozyma polyspora contains an unusual cluster of five pseudogenes homologous to five different genes from yeast killer viruses, killer plasmids, the 2microm plasmid, and a Penicillium virus. By further database searches, we show that this phenomenon is not unique to V. polyspora but that about 40% of the sequenced genomes of Saccharomycotina species contain integrated copies of genes from DNA plasmids or RNA viruses. We propose the name NUPAVs (nuclear sequences of plasmid and viral origin) for these objects, by analogy to NUMTs (nuclear copies of mitochondrial DNA) and NUPTs (nuclear copies of plastid DNA, in plants) of organellar origin. Although most of the NUPAVs are pseudogenes, one intact and active gene that was formed in this way is the KHS1 chromosomal killer locus of Saccharomyces cerevisiae. We show that KHS1 is a NUPAV related to M2 killer virus double-stranded RNA. Many NUPAVs are located beside tRNA genes, and some contain sequences from a mixture of different extrachromosomal sources. We propose that NUPAVs are sequences that were captured by the nuclear genome during the repair of double-strand breaks that occurred during evolution and that some of their properties may be explained by repeated breakage at fragile chromosomal sites.
Collapse
|
10
|
Abstract
Growth inhibition of Saccharomyces cerevisiae by the plasmid-encoded trimeric (alphabetagamma) zymocin toxin from dairy yeast, Kluyveromyces lactis, depends on a multistep response pathway in budding yeast. Following early processes that mediate cell-surface contact by the chitinase alpha-subunit of zymocin, later steps enable import of the gamma-toxin tRNase subunit and cleavage of target tRNAs that carry modified U34 (wobble uridine) bases. With the emergence of zymocin-like toxins, continued zymocin research is expected to yield new insights into the evolution of yeast pathosystems and their lethal modes of action.
Collapse
|
11
|
Paluszynski JP, Klassen R, Meinhardt F. Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 2007; 73:4373-8. [PMID: 17483256 PMCID: PMC1932769 DOI: 10.1128/aem.00271-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene responsible for self-protection in the Pichia acaciae killer plasmid system was identified by heterologous expression in Saccharomyces cerevisiae. Resistance profiling and conditional toxin/immunity coexpression analysis revealed dose-independent protection by pPac1-2 ORF4 and intracellular interference with toxin function, suggesting toxin reinternalization in immune killer cells.
Collapse
Affiliation(s)
- John P Paluszynski
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr 3, Münster, Germany
| | | | | |
Collapse
|
12
|
Jeske S, Meinhardt F, Klassen R. Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Jeske S, Meinhardt F. Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies. Yeast 2006; 23:479-86. [PMID: 16652393 DOI: 10.1002/yea.1367] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome organization of the linear DNA-element pPac1-1 from Pichia acaciae was determined. It turned out to be the smallest autonomous cytoplasmic yeast plasmid known so far, consisting of only 12 646 bp, carrying the shortest terminal inverted repeats yet found (138 bp). As for other cytoplasmic linear yeast plasmids, it is characterized by a strikingly high A + T content (75.35%). Ten putative genes (open reading frames, ORFs) reside on the element, leaving only 2.9% of the sequence outside a coding region. Highest similarities of the predicted proteins were obtained for proteins encoded by the three hitherto known autonomous cytoplasmic linear yeast plasmids. Amino acid sequences correspond to predicted polypeptides encoded by ORFs 2-11 of the linear plasmids pGKL2 of Kluyveromyces lactis, pSKL of Saccharomyces kluyveri and pPE1B of Pichia etchellsii. As for the latter, ORF1 existing on the two other plasmids is lacking on pPac1-1. Consistent with cytoplasmic localization, a cytoplasmic promoter termed upstream conserved sequence (UCS) is located in front of each reading frame. RT-PCR transcript analyses for ORFs 8, 9 and 11 proved expression of such genes but functions could not be attributed. The genome organization of pPac1-1 and other autonomous linear elements was found to be almost congruent, irrespective of the accompanying smaller elements, which may or may not encode their own element-specific DNA polymerases.
Collapse
Affiliation(s)
- Stefanie Jeske
- Westfälische, Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany
| | | |
Collapse
|
14
|
Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88. [PMID: 16390459 DOI: 10.1111/j.1365-2958.2005.04972.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zymocin-induced cell death in Saccharomyces cerevisiae requires the toxin-target (TOT) effector Elongator, a protein complex with functions in transcription, exocytosis and tRNA modification. In line with the latter, trm9Delta cells lacking a tRNA methylase specific for wobble uridine (U(34)) residues survive zymocin and in excess, the Trm9 substrate tRNA(Glu) copies zymocin protection of Elongator mutants. Phenotypes typical of a tot3/elp3Delta Elongator mutant are absent from trm9Delta cells but copied in a tot3Deltatrm9Delta double mutant suggesting that Elongator acts upstream of Trm9. Consistent with Elongator-dependent tRNA modification being more important to mRNA decoding than Trm9, SUP4 and SOE1TRNA suppressors are highly sensitive to loss of Elongator and tRNA U(34) hypomodification. As Trm9 overexpression counteracts the effect of high-copy tRNA(Glu), zymocin suppression by high-copy tRNA(Glu) may reflect tRNA hypomethylation of trm9Delta cells. Thus, Trm9 methylation may enable recognition of tRNA by zymocin, a notion supported by a dramatic reduction of tRNA(Glu) levels in zymocin-treated cells and by cytotoxic zymocin residues conserved between bacterial nucleases and a tRNA modifying GTPase. In sum, Trm9 is a bona fideTOT pathway component whose methylation may be hijacked by zymocin to target tRNA function and eventually, mRNA translation.
Collapse
Affiliation(s)
- Daniel Jablonowski
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Saale, Germany
| | | | | | | | | |
Collapse
|
15
|
Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R. Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. EUKARYOTIC CELL 2005; 4:879-89. [PMID: 15879522 PMCID: PMC1140091 DOI: 10.1128/ec.4.5.879-889.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kluyveromyces lactis zymocin, a trimeric (alphabetagamma) protein toxin complex, inhibits proliferation of Saccharomyces cerevisiae cells. Here we present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of its inhibitory gamma-toxin subunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycin B, syringomycin E, and nystatin, antibiotics that require intact membrane potentials or provoke membrane disruption. KTI6 is allelic to IPT1, coding for mannosyl-diinositolphospho-ceramide [M(IP)(2)C] synthase, which produces M(IP)(2)C, the major plasma membrane sphingolipid. kti6 membranes lack M(IP)(2)C and sphingolipid mutants that have reduced levels of M(IP)(2)C precursors, including the sphingolipid building block ceramide survive zymocin. In addition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic gamma-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, a previously identified zymocin sensitivity factor. In sum, M(IP)(2)C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.
Collapse
Affiliation(s)
- Sabrina Zink
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b100196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|