1
|
Mather KJ, Tjaden AH, Hoehn A, Nadeau KJ, Buchanan TA, Kahn SE, Arslanian SA, Caprio S, Atkinson KM, Cree-Green M, Utzschneider KM, Edelstein SL. Precision and accuracy of hyperglycemic clamps in a multicenter study. Am J Physiol Endocrinol Metab 2021; 320:E797-E807. [PMID: 33645253 PMCID: PMC8238133 DOI: 10.1152/ajpendo.00598.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Application of glucose clamp methodologies in multicenter studies brings challenges for standardization. The Restoring Insulin Secretion (RISE) Consortium implemented a hyperglycemic clamp protocol across seven centers using a combination of technical and management approaches to achieve standardization. Two-stage hyperglycemic clamps with glucose targets of 200 mg/dL and >450 mg/dL were performed utilizing a centralized spreadsheet-based algorithm that guided dextrose infusion rates using bedside plasma glucose measurements. Clamp operators received initial and repeated training with ongoing feedback based on surveillance of clamp performance. The precision and accuracy of the achieved stage-specific glucose targets were evaluated, including differences by study center. We also evaluated robustness of the method to baseline physiologic differences and on-study treatment effects. The RISE approach produced high overall precision (3%-9% variance in achieved plasma glucose from target at various times across the procedure) and accuracy (SD < 10% overall). Statistically significant but numerically small differences in achieved target glucose concentrations were observed across study centers, within the magnitude of the observed technical variability. Variation of the achieved target glucose over time in placebo-treated individuals was low (<3% variation), and the method was robust to differences in baseline physiology (youth vs. adult, IGT vs. diabetes status) and differences in physiology induced by study treatments. The RISE approach to standardization of the hyperglycemic clamp methodology across multiple study centers produced technically excellent standardization of achieved glucose concentrations. This approach provides a reliable method for implementing glucose clamp methodology across multiple study centers.NEW & NOTEWORTHY The Restoring Insulin Secretion (RISE) study centers undertook hyperglycemic clamps using a simplified methodology and a decision guidance algorithm implemented in an easy-to-use spreadsheet. This approach, combined with active management including ongoing central data surveillance and routine feedback to study centers, produced technically excellent standardization of achieved glucose concentrations on repeat studies within and across study centers.
Collapse
Affiliation(s)
- Kieren J Mather
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Ashley H Tjaden
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Washington, DC
| | - Adam Hoehn
- College of Osteopathic Medicine, Marian University, Indianapolis, Indiana
| | - Kristen J Nadeau
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Colorado
| | - Thomas A Buchanan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steven E Kahn
- Department of Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - Silva A Arslanian
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Sonia Caprio
- Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut
| | - Karen M Atkinson
- Department of Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - Melanie Cree-Green
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Colorado
| | - Kristina M Utzschneider
- Department of Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - Sharon L Edelstein
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Washington, DC
| | | |
Collapse
|
2
|
Thornton SN. Increased Hydration Can Be Associated with Weight Loss. Front Nutr 2016; 3:18. [PMID: 27376070 PMCID: PMC4901052 DOI: 10.3389/fnut.2016.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
This mini-review develops the hypothesis that increased hydration leads to body weight loss, mainly through a decrease in feeding, and a loss of fat, through increased lipolysis. The publications cited come from animal, mainly rodent, studies where manipulations of the central and/or the peripheral renin–angiotensin system lead to an increased drinking response and a decrease in body weight. This hypothesis derives from a broader association between chronic hypohydration (extracellular dehydration) and raised levels of the hormone angiotensin II (AngII) associated with many chronic diseases, such as obesity, diabetes, cancer, and cardiovascular disease. Proposed mechanisms to explain these effects involve an increase in metabolism due to hydration expanding cell volume. The results of these animal studies often can be applied to the humans. Human studies are consistent with this hypothesis for weight loss and for reducing the risk factors in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Simon N Thornton
- INSERM U_1116, Université de Lorraine , Vandoeuvre les Nancy , France
| |
Collapse
|
3
|
Handra-Luca A. Vascular changes in hard palate sialolipoma: Sialoangiolipoma or vascular malformation? J Oral Maxillofac Pathol 2015; 19:269. [PMID: 26604516 PMCID: PMC4611948 DOI: 10.4103/0973-029x.164563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Palate sialolipomas are rare. Less than 10 cases located in the hard palate are reported to our knowledge. We report a case of hard palate sialolipoma, peculiar by the intratumor vascular patterns. A 67-year-old man presented with a 1.5 cm lesion of the oral hard palate. The lesion was surgically resected. On microscopy, the lesion, partly encapsulated, consisted of a proliferation of mature adipocytes containing normal minor salivary gland tissue and branching intratumoral vessels of varied size with irregularly thickened wall and papillary projections or tufts. The microscopic features of the tumor we report suggest that vascular malformation-like patterns may occur in sialolipomas of the hard palate. This morphological vascular peculiarity should be acknowledged since it may represent source of hemorrhage.
Collapse
Affiliation(s)
- Adriana Handra-Luca
- Département of Pathology, APHP Paris Nord Sorbonne Cite University, Bobigny, France
| |
Collapse
|
4
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
5
|
Boutagy NE, Marinik EL, McMillan RP, Anderson AS, Frisard MI, Davy BM, Rivero JM, Davy KP, Hulver MW. Angiotensin II receptor blockade and skeletal muscle metabolism in overweight and obese adults with elevated blood pressure. Ther Adv Cardiovasc Dis 2015; 9:45-50. [DOI: 10.1177/1753944714566426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives: Whether angiotensin II receptor blockade improves skeletal muscle fatty acid oxidation in overweight and obese humans is unknown. The purpose of the study was to test the hypothesis that the angiotensin II receptor blocker, olmesartan, would increase fatty acid oxidation and the activity of enzymes associated with oxidative metabolism in skeletal muscle of overweight and obese humans. Methods: A total of 12 individuals (6 men and 6 women) aged 18–75 and with a body mass index ⩾25 kg/m2 were assigned to olmesartan or placebo for 8 weeks in a crossover fashion. Fatty acid oxidation was measured before and after each intervention by counting the 14CO2 produced from [1-14C] palmitic acid in skeletal muscle homogenates. Results: Fatty acid oxidation was not significantly different between treatment periods at baseline and post intervention. In addition, the enzyme activities of citrate synthase and β-hydroxyacyl-coenzyme A dehydrogenase in skeletal muscle homogenates did not differ between treatment periods at baseline or post intervention. Conclusions: Treatment with olmesartan for 8 weeks does not improve fatty acid oxidation or the activity of enzymes associated with oxidative metabolism in skeletal muscle from overweight and obese individuals. Taken together, our results indicate that improvements in skeletal muscle metabolism are not among the additional benefits of olmesartan that extend beyond blood pressure reduction.
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Elaina L. Marinik
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods, and Exercise, and The Metabolic Phenotyping Core Virginia Tech, Blacksburg, VA, USA
| | - Angela S. Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Madlyn I. Frisard
- Department of Human Nutrition, Foods, and Exercise, The Metabolic Phenotyping Core and the Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
| | - Brenda M. Davy
- Department of Human Nutrition, Foods, and Exercise, and the Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
| | - Jose M. Rivero
- Heart Specialists of Southwest Virginia, Christiansburg, VA, USA
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and Exercise, The Metabolic Phenotyping Core and the Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
| | - Matthew W. Hulver
- Wallace Hall, Room 338A; 295 West Campus Drive Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Rüster C, Wolf G. The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin Nephrol 2013; 33:44-53. [PMID: 23374893 DOI: 10.1016/j.semnephrol.2012.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is an independent risk factor for the development and progression of chronic kidney disease and one of the emerging reasons for end-stage renal disease owing to its dramatic increase worldwide. Among the potential underlying pathophysiologic mechanisms, activation of the renin-angiotensin-aldosterone-system (RAAS) plays a central role. Increased angiotensin II (AngII) levels also are central in hypertension, dyslipidemia, and insulin resistance, which, taken together with obesity, represent the metabolic syndrome. Increased AngII levels contribute to hyperfiltration, glomerulomegaly, and subsequent focal glomerulosclerosis by altering renal hemodynamics via afferent arteriolar dilation, together with efferent renal arteriolar vasoconstriction as well as by its endocrine and paracrine properties linking the intrarenal and the systemic RAAS, adipose tissue dysfunction, as well as insulin resistance and hypertension. The imbalance between increased AngII levels and the angiotensin converting enzyme 2/Ang (1-7)/Mas receptor axis additionally contributes to renal injury in obesity and its concomitant metabolic disturbances. As shown in several large trials and experimental studies, treatment of obesity by weight loss is associated with an improvement of kidney disease because it also is beneficial in dyslipidemia, hypertension, and diabetes. The most promising data have been seen by RAAS blockade, pointing to the central position of RAAS within obesity, kidney disease, and the metabolic syndrome.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
7
|
Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013; 15:59-70. [PMID: 23242734 DOI: 10.1007/s11906-012-0323-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone.
Collapse
Affiliation(s)
- Patricia C Underwood
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
8
|
Abstract
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Marinik EL, Frisard MI, Hulver MW, Davy BM, Rivero JM, Savla JS, Davy KP. Angiotensin II receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure. Ther Adv Cardiovasc Dis 2013; 7:11-20. [DOI: 10.1177/1753944712471740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We tested the hypothesis that olmesartan, an angiotensin II receptor blocker (ARB) devoid of peroxisome proliferator-activated receptor γ agonist activity, would improve whole-body insulin sensitivity in overweight and obese individuals with elevated blood pressure (BP). Sixteen individuals (8 women, 8 men; age=49.5 ± 2.9 years; body mass index=33.0 ± 1.7 kg/m2) were randomly assigned in a crossover manner to control and ARB interventions. Insulin sensitivity was determined from intravenous glucose tolerances tests before and after each 8-week intervention. BP, body weight, body fat, lipid and lipoprotein concentrations, and insulin sensitivity were similar at baseline for both treatments (all p > 0.05). Diastolic BP and triglyceride concentrations were higher ( p = 0.007 and 0.042 respectively) at baseline for the ARB compared with the control intervention. Systolic (−11.7 mmHg; p = 0.008) and diastolic (−12.1 mmHg; p = 0.0001) BP decreased, however insulin sensitivity did not change ( p > 0.05) following ARB treatment. Furthermore, there were no significant correlates of changes in insulin sensitivity following the ARB intervention. In summary, our findings indicate that short-term ARB treatment did not affect whole-body insulin sensitivity in overweight or obese individuals with elevated BP. Future studies are needed to clarify the effect of individual ARBs on insulin sensitivity in obesity.
Collapse
Affiliation(s)
- Elaina L. Marinik
- Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madlyn I. Frisard
- Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods and Exercise, and Center for Gerontology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew W. Hulver
- Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Brenda M. Davy
- Laboratory for Eating Behaviors and Weight Management, Department of Human Nutrition, Foods and Exercise, and Center for Gerontology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jose M. Rivero
- Human Integrative Physiology Laboratory, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jyoti S. Savla
- Center for Gerontology and Department of Human Development, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kevin P. Davy
- Virginia Tech, Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods and Exercise, 215 War Memorial Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med 2012; 17:330-41. [PMID: 22814999 DOI: 10.1177/1358863x12450094] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of metabolic syndrome is rapidly increasing in the United States and worldwide. The metabolic syndrome is a complex metabolic and vascular disorder that is associated with inappropriate activation of the renin-angiotensin-aldosterone system (RAAS) in the cardiovascular (CV) system and increased CV morbidity and mortality. Insulin activation of the phosphatidylinositol-3-kinase (PI3K) pathway promotes nitric oxide (NO) production in the endothelium and glucose uptake in insulin-sensitive tissues. Angiotensin (Ang) II inhibits insulin-mediated PI3K pathway activation, thereby impairing endothelial NO production and Glut-4 translocation in insulin-sensitive tissues, which results in vascular and systemic insulin resistance, respectively. On the other hand, Ang II enhances insulin-mediated activation of the mitogen-activated protein kinase (MAPK) pathway, which leads to vasoconstriction and pathologic vascular cellular growth. Therefore, the interaction of Ang II with insulin signaling is fully operative not only in insulin-sensitive tissues but also in CV tissues, thereby linking insulin resistance and CV disease. This notion is further supported by an increasing number of experimental and clinical studies indicating that pharmacological blockade of RAAS improves insulin sensitivity and endothelial function, as well as reduces the incidence of new-onset diabetes in high-risk patients with CV disease. This article reviews experimental and clinical data elucidating the physiological and pathophysiological role of the interaction between insulin and RAAS in the development of insulin resistance as well as CV disease.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology-Hypertension Section, Veterans Affairs Medical Center, University of Miami Miller School of Medicine, Miami, FL 33125, USA.
| | | | | |
Collapse
|