1
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
3
|
Urodynamic characteristics of awake rats under retrained versus freely moving condition: Using a novel model. ACTA ACUST UNITED AC 2016; 36:226-230. [PMID: 27072967 DOI: 10.1007/s11596-016-1571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/23/2015] [Indexed: 02/04/2023]
Abstract
Urodynamic investigation in conscious rats is widely employed to explore functional bladder disorders of various etiologies and pathogeneses. Rats can be placed in restraining cages or wide cabinets where they are allowed to move freely during cystometry. However, the requirements of special devices hampered the application of urodynamic test in freely moving rats, and whether the restraint has any effects on urodynamic parameters in conscious rats remains obscure. In the present study, we described a novel approach for urodynamic investigation in both restrained and freely moving conscious rats. In addition, we for the first time systematically compared the urodynamic parameters of rats in the two conditions. With the current method, we successfully recorded stable and repeatable intravesical pressure traces and collected expected reliable data, which supported the idea that the restraint does not affect the activity of the micturition reflex in rats, provided sufficient and appropriate measures could be applied during cystometry. Fewer technique problems were encountered during urodynamic examination in restrained rats than in freely moving ones. Taken together, conscious cystometry in rats placed in restraining cages with proper managements is a reliable and practical approach for evaluating the detrusor activity and bladder function.
Collapse
|
4
|
Takezawa K, Kondo M, Kiuchi H, Ueda N, Soda T, Fukuhara S, Takao T, Miyagawa Y, Tsujimura A, Matsumoto-Miyai K, Ishida Y, Negoro H, Ogawa O, Nonomura N, Shimada S. Authentic role of ATP signaling in micturition reflex. Sci Rep 2016; 6:19585. [PMID: 26795755 PMCID: PMC4726294 DOI: 10.1038/srep19585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023] Open
Abstract
Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2−/− and P2X3−/− mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex.
Collapse
Affiliation(s)
- Kentaro Takezawa
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Kiuchi
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Norichika Ueda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuji Soda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuya Takao
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazumasa Matsumoto-Miyai
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yusuke Ishida
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiromitsu Negoro
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Schneider MP, Hughes FM, Engmann AK, Purves JT, Kasper H, Tedaldi M, Spruill LS, Gullo M, Schwab ME, Kessler TM. A novel urodynamic model for lower urinary tract assessment in awake rats. BJU Int 2015; 115 Suppl 6:8-15. [PMID: 25597776 DOI: 10.1111/bju.13039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To develop a urodynamic model incorporating external urethral sphincter (EUS) electromyography (EMG) in awake rats. MATERIALS AND METHODS Bladder catheters and EUS EMG electrodes were implanted in female Sprague Dawley rats. Assessments were performed in awake, lightly restrained rats on postoperative day 12-14. Measurements were repeated in the same rat on day 16 under urethane anaesthesia. Urodynamics and EUS EMG were performed simultaneously. In addition, serum creatinine and bladder histology was assessed. RESULTS No significant differences in urodynamic parameters were found between bladder catheter only vs bladder catheter and EUS EMG electrode groups. Urethane anaesthesia evoked prominent changes in both urodynamic parameters and EUS EMG. Serum creatinine was within the normal limits in all rats. Bladder weight and bladder wall thickness were significantly increased in both the bladder catheter only and the bladder catheter and EUS EMG group compared with controls. CONCLUSIONS Our novel urodynamic model allows repetitive measurements of both bladder and EUS function at different time points in the same rat under fully awake conditions and opens promising avenues to investigate lower urinary tract dysfunction in a translational approach.
Collapse
Affiliation(s)
- Marc P Schneider
- Brain Research Institute, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; Neuro-Urology, Spinal Cord Injury Center and Research, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tu H, Cao N, Gu B, Si J, Chen Z, Andersson KE. Serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) improves voiding efficiency in the diabetic rat. BJU Int 2015; 116:147-55. [PMID: 25822577 DOI: 10.1111/bju.12684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongjian Tu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Jiangsu Province China
- School of Medicine; Soochow University; Suzhou City Jiangsu Province China
| | - Nailong Cao
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Jiangsu Province China
| | - Baojun Gu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Jiangsu Province China
| | - Jiemin Si
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Jiangsu Province China
| | - Zhong Chen
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Jiangsu Province China
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
| |
Collapse
|
7
|
Biçer H, Korgali E, Gökçe G, Ayan S, Yıldırım S, Gültekin EY. Contractile responses of urinary bladder in an experimental model of chronic renal failure. Bosn J Basic Med Sci 2013. [PMID: 23198935 DOI: 10.17305/bjbms.2012.2441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chronic kidney disease is a public health problem with increasing prevalence caused by diabetes, hypertension and glomerulonephritis. Number of publications investigate the lower urinary tract dysfunction due to CKD is limited. There is a high incidence of bladder dysfunction of different degrees in patients with renal failure. Mechanism of the lower urinary tract dysfunction in these patients is not well known. In this study, we aimed to investigate the effects of CKD on detrusor function in a rat model of CKD. In our study, 20 Wistar Albino rats have been divided into two groups as CKD and control groups. To the experiment group, left partial nephrectomy and right nephrectomy have been applied. CKD confirmation has done with the BUN and creatinin values from the blood of the rats. The bladder strips were prepared from the CKD and control groups and its contractile responses were evaluated in-vitro. There wasn't a considerable difference with the contractile responses caused by carbachol, KCL. There was a considerable increase in the contractile responses caused by ATP, ADP and electrical field stimulation on the behalf of the CKD group. The present study demonstrated that isolated DSM of CKD group showed significantly increased contraction responses to purinergic agonists ADP, ATP and atropine resistant component in electrical field stimulation-induced contractions as compared to those of the control group. Bladder overactivity and reduced bladder volume in CKD patients might be due to the change in purinergic system.
Collapse
Affiliation(s)
- Hüseyin Biçer
- Department of Urology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | | | |
Collapse
|
8
|
Chronic administration of anticholinergics in rats induces a shift from muscarinic to purinergic transmission in the bladder wall. Eur Urol 2013; 64:502-10. [PMID: 23711542 DOI: 10.1016/j.eururo.2013.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/09/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND First-line pharmacotherapy for overactive bladder consists of anticholinergics. However, patient compliance is exceptionally low, which may be due to progressive loss of effectiveness. OBJECTIVE To decipher the involved molecular mechanisms and to evaluate the effects of chronic systemic administration of anticholinergics on bladder function and on muscarinic and purinergic receptors expression in rats. DESIGN, SETTING, AND PARTICIPANTS Female Wistar rats were implanted with an osmotic pump that chronically administered vehicle (Vehc), 0.36 mg/kg per day oxybutynin (Oxyc), or 0.19 mg/kg per day fesoterodine (Fesoc) for 28 d. INTERVENTIONS For cystometry experiments, a small catheter was implanted in the bladder. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Urologic phenotype was evaluated by the analysis of the micturition pattern and urodynamics. Expression of muscarinic and purinergic receptors was assessed by Western blot analysis of detrusor membrane protein. Functional responses to carbachol and adenosine triphosphate (ATP) were evaluated using muscle-strip contractility experiments. RESULTS AND LIMITATIONS The number of voided spots was transiently decreased in Oxyc rats. In Oxyc rats, the effect of an acute high dose of oxybutynin (1mg/kg intraperitoneally [IP]) on the intermicturition interval was abolished. Expression experiments revealed a decrease of muscarinic acetylcholine receptors M2 (mAChR2) and M3 (mAChR3), whereas the purinergic receptor P2X, ligand-gated ion channel, 1 (P2X1) was enhanced in Oxyc and Fesoc rats compared to Vehc rats. In concordance with the modification of the expression pattern in Oxyc rats, the force generated by carbachol and ATP in muscle-strip contractility experiments was, respectively, lower and higher. Urodynamics revealed that the effects of systemic administration of the purinergic blocker pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (50mg/kg IP) were enhanced in Oxyc rats. As rat bladder physiology is different from that of humans, it is difficult to directly extrapolate our findings to human patients. CONCLUSIONS Chronic administration of anticholinergics in rats induces receptor loss of efficiency and a shift from muscarinic to purinergic transmission.
Collapse
|
9
|
Kullmann FA, Wells GI, McKenna DG, Thor KB. Exogenous activation of muscarinic receptors decreases subsequent non-muscarinic bladder contractions in vivo in the female rat. Life Sci 2013; 92:733-9. [DOI: 10.1016/j.lfs.2013.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 01/23/2023]
|
10
|
Andersson KE, Soler R, Füllhase C. Rodent models for urodynamic investigation. Neurourol Urodyn 2011; 30:636-46. [PMID: 21661007 DOI: 10.1002/nau.21108] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rodents, most commonly rats, mice, and guinea pigs are widely used to investigate urinary storage and voiding functions, both in normal animals and in models of disease. An often used methodology is cystometry. Micturitions in rodents and humans differ significantly and this must be considered when cystometry is used to interpret voiding in rodent models. Cystometry in humans requires active participation of the investigated patient (subject), and this can for obvious reasons not be achieved in the animals. Cystometric parameters in rodents are often poorly defined and do not correspond to those used in humans. This means that it is important that the terminology used for description of what is measured should be defined, and that the specific terminology used in human cystometry should be avoided. Available disease models in rodents have limited translational value, but despite many limitations, rodent cystometry may give important information on bladder physiology and pharmacology. The present review discusses the principles of urodynamics in rodents, techniques, and terminology, as well as some commonly used disease models, and their translational value.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
11
|
Gu B, Wu G, Si J, Xu Y, Andersson KE. Improving voiding efficiency in the diabetic rat by a 5-HT1A serotonin receptor agonist. Neurourol Urodyn 2011; 31:168-73. [PMID: 21780177 DOI: 10.1002/nau.21182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
AIMS Serotonin affects micturition in the normal rat through actions not only on ascending and descending spinal pathways and supraspinal centers but also on the lumbosacral spinal cord level. The selective 5-HT1A receptor agonist, 8-OH-DPAT((R)-(+)-8-hydroxy-2-(di-n-propylamino) tetralin), reversed detrusor-sphincter dyssynergia (DSD) in the spinal cord injury (SCI) rat. Rats with experimental diabetes mellitus (DM) have been shown to have both bladder and urethral dysfunction during reflex voiding. We therefore examined the effects of 8-OH-DPAT on micturition in DM rats. METHODS Female Sprague-Dawley rats were used. DM was induced by an intraperitoneal injection of streptozotocin (STZ, 65 mg/kg) and a cystometric study was performed 8 weeks post-injection. External urethral sphincter electromyography (EUS-EMG) was also measured. The 5-HT1A antagonist WAY-100635(N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide) was administered after each 8-OH-DPAT dose-response. RESULTS Compared to controls, DM rats had a higher bladder capacity, residual volume, and a lower voiding efficiency. In DM rats, 8-OH-DPAT (3-1,000 µg/kg, i.v.) induced significant dose-dependent increases in micturition volume, and decreases in residual volume, resulting in increases in voiding efficiency. During the micturition, there was a dose-dependent increased phasic EUS activity correlated with the improved voiding efficiency. WAY-100635 (300 µg/kg, i.v.) reversed the 8-OH-DPAT-induced changes. CONCLUSIONS Both the bladder voiding efficiency and the periodic EUS activity were decreased in DM rats. 5-HT1A receptor agonism promoted periodic EUS activity, thereby improving voiding efficiency. Whether or not these results may have implications for the future treatment of voiding dysfunction in DM patients remains to be studied.
Collapse
Affiliation(s)
- Baojun Gu
- Department of Urology, Shanghai 6th People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Smith PP. Purinoceptors and Bladder Dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2011. [DOI: 10.1007/s11884-011-0081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Yeh CH, Chiang HS, Chien CT. Hyaluronic acid ameliorates bladder hyperactivity via the inhibition of H2O2-enhanced purinergic and muscarinic signaling in the rat. Neurourol Urodyn 2010; 29:765-70. [PMID: 19852063 DOI: 10.1002/nau.20830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIMS We hypothesize that increased H(2)O(2) in the urinary bladder may affect ATP and acetylcholine release and activate urothelial purinergic and muscarinic signaling consequently leading to hyperactive bladder. MATERIALS AND METHODS We infused 0.3% and 1.5% H(2)O(2) to the urinary bladder to evaluate the voiding function and frequency, pelvic afferent (PANA) and pelvic efferent nerve activity (PENA) simultaneously in the urethane anesthetized rats. We measured ATP and acetylcholine content in the rat urinary bladder under saline or H(2)O(2) stimulation. Hyaluronic acid, muscarinic, and purinergic receptor antagonists were used to evaluate their effects and mechanisms on H(2)O(2)-induced hyperactive bladder. RESULTS Intravesical H(2)O(2) administration increased the frequency of voiding and the maximal amplitude of intravesical pressure (IVP) in the urethane anesthetized rats. Intravesical H(2)O(2) decreased the threshold level of PANA and PENA for triggering micturition and increased ATP and acetylcholine contents in the H(2)O(2)-treated bladder in the rat. Hyaluronic acid in vitro directly scavenged H(2)O(2) in a dose-dependent manner. Intravesical hyaluronic acid for 30 min attenuated H(2)O(2)-elicited excitatory effects on the frequency of voiding, amplitude of IVP and the sensitization of PANA and PENA in the rats. Hyaluronic acid treatment reduced H(2)O(2)-induced ATP and acetylcholine release in the urinary bladder. Intravesical administration of muscarinic receptor antagonist atropine methyl nitrate (50 microM) or purinergic receptor antagonist PPADS (1 mM) ameliorated H(2)O(2)-induced hyperactive bladder. CONCLUSIONS These results indicate that hyaluronic acid treatment can ameliorate H(2)O(2)-induced bladder hyperactivity possibly via the antioxidant activity and the inhibition of activating purinergic and muscarinic signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Division of Urology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
De Bock F, De Wachter S, Wyndaele JJ. Exploring the mechanisms of intravesical electrical stimulation in the in vitro rat whole bladder after treatment with atropine, α,β-methylATP and tetrodotoxin. Neurourol Urodyn 2010; 30:158-62. [PMID: 20860014 DOI: 10.1002/nau.20949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/22/2010] [Indexed: 11/07/2022]
Abstract
AIMS In a previous study, we showed that the working mechanism of intravesical electrical stimulation (IVES) is probably mainly nerve mediated. But even after bladder decentralization, IVES can induce detrusor contraction. This study explores the effect of IVES in decentralized bladders and the importance of receptors in the bladder wall for a response on IVES. METHODS IVES (10 Hz square wave pulses, 20 msec pulse duration, 6 mA) was used in the bladder of 16 female Sprague-Dawley rats. After repeating IVES after consecutive bilateral bladder nerves section (L6-roots, pelvic nerves, and major pelvic ganglion (MPG)), the bladders were mounted in a tissue bath. IVES was performed in the control (n=16), after administration of tetrodotoxin (TTX) (n=6), after atropine and atropine with α,β-methylATP (n=6), and after α,β-methylATP and α,β-methylATP with atropine (n=4). The IVES-induced pressure rise (ΔP) was recorded. RESULTS Maximum ΔP (maxΔP) after transection of the MPG was significantly lower than after pelvic nerves transection. Treatment with TTX and with α,β-methylATP plus atropine abolished ΔP. Atropine alone gave an insignificant decrease of maxΔP. Treatment with α,β-methylATP alone reduced maxΔP significantly. CONCLUSIONS IVES can evoke contractions in a decentralized bladder. IVES-induced contractions are not a result of direct muscle stimulation, but are nerve mediated, involving intramural innervation and several parts of the bladder innervation. IVES-evoked contraction can be divided in a, contraction duration determining, cholinergic part and a, contraction strength determining, purinergic part. The peripheral innervation could play a role in IVES treatment in patients with interrupted central reflex pathway.
Collapse
Affiliation(s)
- Filip De Bock
- Department of Urology, Faculty of Medicine, University of Antwerp, University Hospital of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
15
|
Abstract
PURPOSE The prevalence of bladder dysfunctions increases with age. In humans it is difficult to separate changes related to exogenous factors from those directly related to the aging process. Some confounding variables can be avoided by studying age related changes in an animal model. We evaluated the impact of age on bladder function in vivo and in vitro, and characterized the corresponding morphological changes. MATERIALS AND METHODS Young (4 to 6 months old) and old (older than 28 to 30 months) male Fischer/Brown Norway rats were used in the study. Cystometric studies were done in conscious, freely moving rats. After cystometry tissue strips from the bladder body were used in in vitro studies of muscarinic receptor activation and electrical field stimulation, and histological examination. RESULTS Old rats had higher bladder weight than young rats but the bladder-to-body weight ratio did not change. We noted significant age related differences in 8 of 10 cystometric parameters. Old rats had increased bladder capacity, post-void residual volume, micturition volume and frequency, baseline and intermicturition pressure, and spontaneous activity but decreased micturition pressure. Bladder strip responses to carbachol and electrical field stimulation were significantly lower in old than in young rats. Histological examination revealed urothelial thinning, lower muscle mass and higher collagen content in the bladders of old vs young rats. CONCLUSIONS Physiological aging alters bladder function in male rats even when external factors remain constant. Thus, in old rats bladder capacity, post-void residual urine and spontaneous activity are higher, and responses to muscarinic receptor stimulation and electrical field stimulation are lower than in young rats. Such changes correspond to findings in aging human bladders, supporting the view that the Fischer/Brown Norway rat is a useful model in which to study age related bladder function changes.
Collapse
|
16
|
Streng T, Santti R, Andersson KE. Voiding effects mediated by α2-adrenoceptors in the anaesthetized male rat. BJU Int 2010; 106:1546-9. [DOI: 10.1111/j.1464-410x.2010.09228.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zhang X, Douglas KL, Jin H, Eldaif BM, Nassar R, Fraser MO, Dolber PC. Sprouting of substance P-expressing primary afferent central terminals and spinal micturition reflex NK1 receptor dependence after spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2084-96. [PMID: 18945947 DOI: 10.1152/ajpregu.90653.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The primary afferent neurotransmitter triggering the spinal micturition reflex after complete spinal cord injury (SCI) in the rat is unknown. Substance P detected immunohistochemically in the sacral parasympathetic nucleus was significantly higher in 12 SCI rats than in 12 spinally intact rats (P = 0.008), suggesting substance P as a plausible candidate for the primary afferent neurotransmitter. The effects of the tachykinin NK1 receptor antagonist L-733060 on the spinal micturition reflex were then determined by performing conscious cystometry in an additional 14 intact rats and 14 SCI rats with L-733060 (0.1-100 microg) administered intrathecally at L6-S1. L-733060 was without effect in intact rats, but blocked the spinal micturition reflex in 10 of 14 SCI rats and increased the intermicturition interval in 2 of 4 others at doses ranging from 10 to 100 microg. Both phasic and nonphasic voiding contractions, differentiated according to the presence of phasic external urethral sphincter (EUS) activity, were present in most SCI rats. Both types of contractions were blocked by high doses of L-733060. Interestingly, there was a relative decline in phasic voiding contractions at high doses as well as a decline in contraction amplitude in nonphasic voiding contractions. In other respects, cystometric variables were largely unaffected in either spinally intact or SCI rats. L-733060 did not affect tonic EUS activity at any dose except when the spinal micturition reflex was blocked and tonic activity was consequently lost. These experiments show that tachykinin action at spinal NK1 receptors plays a major role in the spinal micturition reflex in SCI rats.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Department of Surgery, Veterans Affairs Medical Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ney P, Pandita RK, Newgreen DT, Breidenbach A, Stöhr T, Andersson KE. Pharmacological characterization of a novel investigational antimuscarinic drug, fesoterodine, in vitro and in vivo. BJU Int 2008; 101:1036-42. [DOI: 10.1111/j.1464-410x.2007.07358.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Kim SJ, Mon HS, Choi HY, Kim YT. Characteristics of Detrusor Overactivity Induced by Intravesical Instillation of Adenosine 5'-Triphosphate. Korean J Urol 2008. [DOI: 10.4111/kju.2008.49.5.424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sang Jin Kim
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hong Sang Mon
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hong Yong Choi
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea
| | - Yong Tae Kim
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
20
|
Teixeira CE, Jin L, Priviero FBM, Ying Z, Webb RC. Comparative pharmacological analysis of Rho-kinase inhibitors and identification of molecular components of Ca2+ sensitization in the rat lower urinary tract. Biochem Pharmacol 2007; 74:647-58. [PMID: 17603024 PMCID: PMC1987395 DOI: 10.1016/j.bcp.2007.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/02/2007] [Accepted: 06/04/2007] [Indexed: 01/15/2023]
Abstract
We aimed to compare the expression and function of molecular components of the RhoA/Rho-kinase signaling pathway in the contractile responses of detrusor, trigonal and urethral smooth muscle, using selective Rho-kinase inhibitors. Contractility studies and molecular approaches were employed to demonstrate the expression patterns and functional activity of the RhoA/Rho-kinase signaling pathway in the lower urinary tract. Frequency-response curves (1-32 Hz) and concentration-response curves (CRC) to carbachol (CCh, 0.01-30 microM), phenylephrine (PE, 0.01-300 microM) and endothelin-1 (ET-1, 0.01-100 nM) were significantly attenuated (p<0.01) following incubation with the Rho-kinase inhibitors H-1152 (0.1-1 microM), Y-27632 (1-10 microM) or HA-1077 (10 microM). Addition of Rho-kinase inhibitors also markedly reduced (p<0.01) the contractions evoked by either KCl (80 mM) or alpha,beta-methylene ATP (alpha,beta-mATP, 10 microM). Among the Rho-kinase inhibitors tested, H-1152 was approximately 9-16 times more potent than Y-27632 or HA-1077. In addition, basal tone of detrusor and trigonal strips was reduced following addition of Y-27632 (10 microM), H-1152 (1 microM) and HA-1077 (10 microM). The expression of RhoA, RhoGDI, leukemia-associated RhoGEF (LARG) and p115RhoGEF was similar among the detrusor, trigone and urethra, whereas Rho-kinase alpha, Rho-kinase beta and PDZ-RhoGEF protein levels were significantly lower in the urethra. Components of the RhoA/Rho-kinase signaling are expressed in detrusor, trigonal and urethral smooth muscle and dynamically regulate contraction and tone. Manipulation of RhoGEF expression may provide further understanding of mechanisms involving Ca(2+) sensitization in the lower urinary tract.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Bernoulli J, Yatkin E, Talvitie EM, Santti R, Streng T. Urodynamic changes in a noble rat model for nonbacterial prostatic inflammation. Prostate 2007; 67:888-99. [PMID: 17440979 DOI: 10.1002/pros.20567] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic nonbacterial prostatitis (CP) associated with voiding dysfunction is a poorly understood clinical phenomenon. The goal of the present study was to induce prostatic inflammation with estrogen and androgen treatment and to record associated urodynamic changes in Noble rats. METHODS Rats were treated with estradiol and testosterone implants to increase estradiol concentration in serum while testosterone concentration was maintained at or slightly above the control level. The urodynamical recordings were performed under anesthesia after the hormone treatments for 3 and 6 weeks. The dorsolateral lobes of the prostates were removed for histopathological analysis after recordings. RESULTS After the 3-week treatment, lymphocytes, mainly T-cells, were located around the capillaries. During the following 3 weeks lymphocytes migrated into stroma and acini. Cytotoxic T-cells were seen intraepithelially, and neutrophiles inside the acini. Removal of estrogen implant or treatment with anti-estrogen diminished inflammation. No changes in voiding pattern were seen after the 3-week treatment. Three weeks later, bladder weight and capacity were increased, and the micturition time was prolonged. CONCLUSIONS Elevated estrogen concentration was essential for the gradual development of prostatic inflammation. The profile and location of inflammatory cells suggest that prostatic vasculature is one of the sites of estrogen action. Urodynamic changes which developed in association with glandular inflammation indicated abnormal bladder function, reflecting an incipient obstruction.
Collapse
Affiliation(s)
- Jenni Bernoulli
- Institute of Biomedicine, Department of Anatomy, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|