1
|
Rampazzo R, Vavasori A, Ronchin L, Riello P, Marchiori M, Saorin G, Beghetto V. Enhanced Antibacterial Activity of Vancomycin Loaded on Functionalized Polyketones. Polymers (Basel) 2024; 16:1890. [PMID: 39000745 PMCID: PMC11244503 DOI: 10.3390/polym16131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive Staphylococcus aureus ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 μg/mL and 0.24 μg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.
Collapse
Affiliation(s)
- Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Department of Architecture and Industrial Design, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
| | - Andrea Vavasori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Lucio Ronchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Pietro Riello
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Martina Marchiori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 701268 Bari, Italy
| |
Collapse
|
2
|
Zong Y, Li Q, Mu H, Jian Z. Palladium Promoted Copolymerization of Carbon Monoxide with Polar or Non-polar Olefinic Monomers. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201102221113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The copolymers of carbon monoxide (CO) and olefins, namely polyketones, are a
family of widely used materials. In the catalytic preparation of these materials, palladium(II)
catalysts represent the most successful catalytic systems. The production of both alternating
and non-alternating polyketones has been achieved, with a great difference in their physical
properties. Herein, a variety of palladium(II) catalysts, employed for the copolymerization of
CO with various olefinic monomers, such as ethylene, α -olefins, styrene and polar vinyl
monomers, are fully summarized. The influence of important factors, such as solvents and
counterions on specific copolymerization, is also discussed. This review aims to enlighten the
design of new Pd catalysts with improved properties, as well as the development of new
polyketone materials.
Collapse
Affiliation(s)
- Yanlin Zong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Qiankun Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| |
Collapse
|
3
|
Samples EM, Schuck JM, Joshi PB, Willets KA, Dobereiner GE. Synthesis and Properties of N-Arylpyrrole-Functionalized Poly(1-hexene- alt-CO). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Evan M. Samples
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jeremy M. Schuck
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B. Joshi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Katherine A. Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|