1
|
Maghsoudi H, Sheikhnia F, Sitarek P, Hajmalek N, Hassani S, Rashidi V, Khodagholi S, Mir SM, Malekinejad F, Kheradmand F, Ghorbanpour M, Ghasemzadeh N, Kowalczyk T. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers (Basel) 2023; 15:5435. [PMID: 38001694 PMCID: PMC10670652 DOI: 10.3390/cancers15225435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the second most common type of cancer and the leading cause of death among men worldwide. Preventing the progression of cancer after treatments such as radical prostatectomy, radiation therapy, and hormone therapy is a major concern faced by prostate cancer patients. Inflammation, which can be caused by various factors such as infections, the microbiome, obesity and a high-fat diet, is considered to be the main cause of PC. Inflammatory cells are believed to play a crucial role in tumor progression. Therefore, nonsteroidal anti-inflammatory drugs along with their effects on the treatment of inflammation-related diseases, can prevent cancer and its progression by suppressing various inflammatory pathways. Recent evidence shows that nonsteroidal anti-inflammatory drugs are effective in the prevention and treatment of prostate cancer. In this review, we discuss the different pathways through which these drugs exert their potential preventive and therapeutic effects on prostate cancer.
Collapse
Affiliation(s)
- Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
| | - Sadaf Khodagholi
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran;
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-88349, Iran;
| | - Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
2
|
Qiu L, Gao Q, Tao A, Jiang J, Li C. Mometasone Furoate Inhibits the Progression of Head and Neck Squamous Cell Carcinoma via Regulating Protein Tyrosine Phosphatase Non-Receptor Type 11. Biomedicines 2023; 11:2597. [PMID: 37892971 PMCID: PMC10603855 DOI: 10.3390/biomedicines11102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Mometasone furoate (MF) is a kind of glucocorticoid with extensive pharmacological actions, including inhibiting tumor progression; however, the role of MF in head and neck squamous cell carcinoma (HNSCC) is still unclear. This study aimed to evaluate the inhibitory effect of MF against HNSCC and investigate its underlying mechanisms. Cell viability, colony formation, cell cycle and cell apoptosis were analyzed to explore the effect of MF on HNSCC cells. A xenograft study model was used to investigate the effect of MF on HNSCC in vivo. The core targets of MF for HNSCC were identified using network pharmacology analysis, TCGA database analysis and real-time PCR. Molecular docking was performed to determine the binding energy. Protein tyrosine phosphatase non-receptor type 11 (PTPN11)-overexpressing cells were constructed, and then, the cell viability and the expression levels of proliferation- and apoptosis-related proteins were detected after treatment with MF to explore the role of PTPN11 in the inhibitory effect of MF against HNSCC. After cells were treated with MF, cell viability and the number of colonies were decreased, the cell cycle was arrested and cell apoptosis was increased. The xenograft study results showed that MF could inhibit cell proliferation via promoting cell apoptosis in vivo. PTPN11 was shown to be the core target of MF against HNSCC via network pharmacology analysis, TCGA database analysis and real-time PCR. The molecular docking results revealed that PTPN11 exhibited the strongest ability to bind to MF. Finally, MF could attenuate the effects of increased cell viability and decreased cell apoptosis caused by PTPN11 overexpression, suggesting that MF can inhibit the progression of HNSCC by regulating PTPN11. MF targeted PTPN11, promoting cell cycle arrest and cell apoptosis, and consequently exerting effective anti-tumor activity.
Collapse
Affiliation(s)
- Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Qian Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
3
|
Darvishi N, Yousefinejad V, Akbari ME, Abdi M, Moradi N, Darvishi S, Mehrabi Y, Ghaderi E, Jamshidi-Naaeini Y, Ghaderi B, Davoodi SH. Antioxidant and anti-inflammatory effects of oral propolis in patients with breast cancer treated with chemotherapy: a Randomized controlled trial. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Zappavigna S, Cossu AM, Grimaldi A, Bocchetti M, Ferraro GA, Nicoletti GF, Filosa R, Caraglia M. Anti-Inflammatory Drugs as Anticancer Agents. Int J Mol Sci 2020; 21:ijms21072605. [PMID: 32283655 PMCID: PMC7177823 DOI: 10.3390/ijms21072605] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation is strictly associated with cancer and plays a key role in tumor development and progression. Several epidemiological studies have demonstrated that inflammation can predispose to tumors, therefore targeting inflammation and the molecules involved in the inflammatory process could represent a good strategy for cancer prevention and therapy. In the past, several clinical studies have demonstrated that many anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDs), are able to interfere with the tumor microenvironment by reducing cell migration and increasing apoptosis and chemo-sensitivity. This review focuses on the link between inflammation and cancer by describing the anti-inflammatory agents used in cancer therapy, and their mechanisms of action, emphasizing the use of novel anti-inflammatory agents with significant anticancer activity.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| | - Giuseppe Andrea Ferraro
- Multidisciplinary Department of Medical and Dental Specialties, University of Campania, “Luigi Vanvitelli”, Plastic Surgery Unit, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical and Dental Specialties, University of Campania, “Luigi Vanvitelli”, Plastic Surgery Unit, 80138 Naples, Italy; (G.A.F.); (G.F.N.)
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- Consorzio Sannio Tech-AMP Biotec, 82030 Apollosa, Italy
- Correspondence:
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.Z.); (A.M.C.); (A.G.); (M.B.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
| |
Collapse
|
5
|
Das M, Goswami U, Bhattacharyya S, Kandimalla R, Chattopadhyay A, Ghosh SS. Integration of a Nonsteroidal Anti-Inflammatory Drug with Luminescent Copper for in Vivo Cancer Therapy in a Mouse Model. ACS APPLIED BIO MATERIALS 2020; 3:227-238. [DOI: 10.1021/acsabm.9b00751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madhumita Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Guwahati Neurological Research Centre (GNRC) Medical Lab, North Guwahati 781031, India
| | - Upashi Goswami
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Raghuram Kandimalla
- Institute of Advance Study of Science and Technology, Guwahati 781035, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
6
|
Qasem A, Kasabri V, AbuRish E, Bustanji Y, Al-Hiari Y, Al-Abbasi R, Abu-Irmaileh B, Alalawi S. The Evaluation of Potential Cytotoxic Effect of Different Proton Pump Inhibitors on Different Human Cancer Cell Lines. Anticancer Agents Med Chem 2019; 20:245-253. [PMID: 31663482 DOI: 10.2174/1871520619666191029151545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 09/13/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess the differential cytotoxic activity of PPIs on different human cancer cell lines; namely A549 lung cancer, CACO-2 colorectal cancer, MCF-7 breast cancer, and PANC-1 pancreatic cancer, A375 skin melanoma. METHODS In this study, the five human cancer cell lines and human non-cancerous fibroblasts were treated with increasing concentration of PPIs Omeprazole (OMP), Esomeprazole (ESOM), and Lansoprazole (LANSO) (50-300μM), over 24h, 48h, and 72h. Cell viability was determined using 3-(4,5- Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the IC50 values of PPIs were measured. The most sensitive cell line A375 was used for further investigation. The cytotoxic effects of LANSO on these cells were assessed using Annexin-V Propidium Iodide (AV-PI) flow cytometry. As of action mechanism; anti-inflammatory effects of each PPIs and PPIs-DOXO combination therapy on LPS-stimulated RAW 264.7 mouse macrophages were assessed. RESULTS Dose and time dependence cytotoxic activity of PPIs on human cancer cell lines was founded. Unlike DOXO; All PPIs had a selective cytotoxic effect in the normal fibroblasts. Unlike the equipotent OMP and ESOM; LANSO was the most potent drug with IC50 values at 72h of 99, 217, 272, 208, 181μM against A375, A549, CACO-2, MCF-7, and PANC-1, respectively. AV-PI flow cytometry revealed dose-dependent apoptotic effects of LANSO alone and substantially enhanced in DOXO-co-treatments. Interestingly unlike ESOM and OMP, LANSO proved more effective than indomethacin in LPS-stimulated RAW 264.7 macrophages. None of the tested compounds, as well as indomethacin, exerted any cytotoxicity against RAW 264.7 macrophages. PPIs-DOXO lacked potential synergistic combination antiinflammation therapies. CONCLUSION This study provides the evidence that PPIs induce a direct and differential cytotoxic activity against human cancer cell line by the induction of the apoptosis. Moreover, PPIs increase cancer cell lines sensitivity to doxorubicin via apoptosis augmentation. Nevertheless, PPIs-DOXO lacked potential synergistic combination therapies in either antiproliferation or anti-inflammation.
Collapse
Affiliation(s)
- Aya Qasem
- School of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Eman AbuRish
- School of Pharmacy, University of Jordan, Amman, Jordan
| | - Yasser Bustanji
- School of Pharmacy, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | | | - Reem Al-Abbasi
- School of Pharmacy, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
7
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
8
|
Derosa L, Galli L, Orlandi P, Fioravanti A, Di Desidero T, Fontana A, Antonuzzo A, Biasco E, Farnesi A, Marconcini R, Francia G, Danesi R, Falcone A, Bocci G. Docetaxel plus oral metronomic cyclophosphamide: A phase II study with pharmacodynamic and pharmacogenetic analyses in castration-resistant prostate cancer patients. Cancer 2014; 120:3923-31. [DOI: 10.1002/cncr.28953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Derosa
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | - Luca Galli
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | - Paola Orlandi
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Anna Fioravanti
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Teresa Di Desidero
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Andrea Fontana
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | | | - Elisa Biasco
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | | | | | - Giulio Francia
- Border Biomedical Research Center; University of Texas at El Paso; El Paso Texas
| | - Romano Danesi
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Alfredo Falcone
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
- Tumor Institute of Tuscany; Florence Italy
| | - Guido Bocci
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
- Tumor Institute of Tuscany; Florence Italy
| |
Collapse
|
9
|
Garcia M, Velez R, Romagosa C, Majem B, Pedrola N, Olivan M, Rigau M, Guiu M, Gomis RR, Morote J, Reventós J, Doll A. Cyclooxygenase-2 inhibitor suppresses tumour progression of prostate cancer bone metastases in nude mice. BJU Int 2014; 113:E164-77. [DOI: 10.1111/bju.12503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marta Garcia
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Roberto Velez
- Universitat Autònoma de Barcelona; Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Cleofé Romagosa
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Pathology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Blanca Majem
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Núria Pedrola
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Mireia Olivan
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Orthopaedic Surgery and Traumatology Department; Vall d'Hebron University Hospital; Barcelona Spain
| | - Marina Rigau
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
| | - Marc Guiu
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
| | - Roger R. Gomis
- Oncology Programme; Institute for Research in Biomedicine (IRB-Barcelona); Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
| | - Juan Morote
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Urology; Vall d'Hebron University Hospital; Barcelona Spain
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| | - Andreas Doll
- Research Unit in Biomedicine and Translational and Pediatric Oncology; Research Institute Vall d'Hebron University Hospital (VHIR); Barcelona Spain
- Department of Basic Science; International University of Catalonia; Barcelona Spain
| |
Collapse
|
10
|
Antonarakis ES, Heath EI, Walczak JR, Nelson WG, Fedor H, De Marzo AM, Zahurak ML, Piantadosi S, Dannenberg AJ, Gurganus RT, Baker SD, Parnes HL, DeWeese TL, Partin AW, Carducci MA. Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 2009; 27:4986-93. [PMID: 19720908 DOI: 10.1200/jco.2009.21.9410] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Cyclooxygenase-2 (COX-2) is a potential pharmacologic target for the prevention of various malignancies, including prostate cancer. We conducted a randomized, double-blind trial to examine the effect of celecoxib on drug-specific biomarkers from prostate tissue obtained at prostatectomy. PATIENTS AND METHODS Patients with localized prostate cancer and Gleason sum > or = 7, prostate-specific antigen (PSA) > or = 15 ng/mL, clinical stage T2b or greater, or any combination with greater than 45% risk of capsular penetration were randomly assigned to celecoxib 400 mg by mouth twice daily or placebo for 4 to 6 weeks before prostatectomy. The primary end point was the difference in prostatic prostaglandin levels between the two groups. Secondary end points were differences in COX-1 and -2 expressions; oxidized DNA bases; and markers of proliferation, apoptosis and angiogenesis. Tissue celecoxib concentrations also were measured. Tertiary end points were drug safety and compliance. RESULTS Seventy-three patients consented, and 64 were randomly assigned and included in the intention-to-treat analysis. There were no treatment differences in any of the primary or secondary outcomes. Multivariable regression revealed that tumor tissue had significantly lower COX-2 expression than benign prostatic tissue (P = .01) and significantly higher levels of the proliferation marker Ki-67 (P < .0001). Celecoxib was measurable in prostate tissue of patients on treatment, demonstrating that celecoxib reached its target. Celecoxib was safe and resulted in only grade 1 toxicities. CONCLUSION Treatment with 4 to 6 weeks of celecoxib had no effect on intermediate biomarkers of prostate carcinogenesis, despite the achievement of measurable tissue levels. We caution against using celecoxib 400 mg twice daily as a preventive agent for prostate cancer in additional studies.
Collapse
Affiliation(s)
- Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fontana A, Galli L, Fioravanti A, Orlandi P, Galli C, Landi L, Bursi S, Allegrini G, Fontana E, Di Marsico R, Antonuzzo A, D'Arcangelo M, Danesi R, Del Tacca M, Falcone A, Bocci G. Clinical and Pharmacodynamic Evaluation of Metronomic Cyclophosphamide, Celecoxib, and Dexamethasone in Advanced Hormone-refractory Prostate Cancer. Clin Cancer Res 2009; 15:4954-62. [DOI: 10.1158/1078-0432.ccr-08-3317] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abstract
Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents.
Collapse
Affiliation(s)
- Elizabeth R Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Despite the well documented stage migration in prostate cancer, a substantial number of men still present to urologists with locally advanced or metastatic disease. RECENT FINDINGS The beneficial role of prostatectomy has been affirmed in several studies examining its therapeutic impact in locally advanced, nonmetastatic prostate cancer. Adjuvant therapy with radiation or hormones appears to increase prostate-specific antigen relapse-free survival. Whether prostate-specific antigen relapse-free survival is an appropriate surrogate for overall survival remains unverified. The timing and duration of hormonal therapy continues to be debated. Hormone therapy administered 'too late' in the course of metastatic disease portends a shortened survival but possible side effects of androgen ablation must be considered. Several docetaxel-based combination chemotherapies for hormone refractory prostate cancer are being studied, but their efficacy in the neoadjuvant setting thus far has been limited. Progress in the palliation of bony metastases has resulted in a decrease in symptoms and skeletal events. SUMMARY This review identifies seminal data that focus on controversial therapeutic dilemmas in prostate cancer. The literature of the last few years universally emphasizes the importance of a multidisciplinary collaboration in prostate cancer. It is only with this type of cooperation that essential research will continue and succeed.
Collapse
|