1
|
Fukuzawa N, Matsuo K, Atsumi G, Tasaka Y, Mitsuda N. Plant-made pharmaceuticals. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:243-260. [PMID: 40177139 PMCID: PMC11962629 DOI: 10.5511/plantbiotechnology.24.0716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 04/05/2025]
Abstract
Plant-made pharmaceuticals (PMP) have great potential in terms of production costs, scalability, safety, environmental protection, and consumer acceptability. The first PMP were antibodies and antigens produced in stably transformed transgenic plants in the around 90s. Even though the effort using stable transgenic plants is still going on, the mainstream of PMP production has shifted to transient expression in Nicotiana benthamiana. This system involves the expression vectors by Agrobacterium, and its efficiency has been improved by the development of new vector systems and host engineering. The COVID-19 outbreak accelerated this trend through efforts to produce vaccines in plants. Transient expression systems have been improved and diversified by the development of plant virus vectors, which can be classified as full and deconstructed vectors. Full virus vectors spread systemically, allowing for protein production in the entire plant. Compared with conventional agroinfiltration vectors, excellent virus vectors result in higher protein production. Engineering of host plants has included knocking out gene-silencing systems to increase protein production, and the introduction of glycan modification enzymes so that plant-made proteins more resemble animal-made proteins. Hydroponic cultivation systems in plant factories and environmental controls have contributed to efficient protein production in plants. Considering their advantages and small environmental impact, PMP should be more widely adopted for pharmaceuticals' production. However, the initial investment and running costs of plant factories are higher than open filed cultivation. The next objectives are to develop next-generation low-cost plant factories that use renewable energy and recycle materials based on the idea of circular economy.
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Go Atsumi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yasushi Tasaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
2
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
3
|
Fukuzawa N, Masuta C, Matsumura T. Rapid transient protein production by the coat protein-deficient cucumber mosaic virus vector: non-packaged CMV system, NoPaCS. PLANT CELL REPORTS 2018; 37:1513-1522. [PMID: 30039464 DOI: 10.1007/s00299-018-2322-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE We developed a non-packaged CMV system (NoPaCS) for CMV-agroinfection with a virus-inescapable transgenic plant platform, enabling rapid, high production of a large-sequence target protein. For rapidly producing high levels of a desirable protein, many plant virus vectors have been developed. However, there is always a concern that such recombinant viruses may escape into the environment. Especially for insect-transmissible viruses, certain measures must be taken. We here developed a new cucumber mosaic virus (CMV) RNA 3-based vector that is not transmitted by aphids because we deleted the coat protein (CP) gene responsible for aphid transmission and replaced it with a foreign gene. Transgenic Nicotiana benthamiana plants expressing CMV RNA 1 (CR1Tg) were found to be the most suitable platform for producing a recombinant protein using the CMV vector. By agroinfiltrating CR1Tg plants with the RNA 2 construct and the CMV vector harboring the green fluorescence protein (GFP) gene instead of the CP gene, we achieved a high yield of GFP (e.g., ~ 750 mg/kg FW) throughout the bacteria-infiltrated tissues at 2-3 days after infiltration. Furthermore, with this CMV-agroinfection system, a large gene such as the β-glucuronidase (GUS) gene can be expressed because the viral RNAs are not necessarily encapsidated for replication. The system is designated "non-packaged CMV system (NoPaCS)".
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
4
|
Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 2015; 36:840-50. [DOI: 10.3109/07388551.2015.1049934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
6
|
Zhang H, Wang L, Hunter D, Voogd C, Joyce N, Davies K. A Narcissus mosaic viral vector system for protein expression and flavonoid production. PLANT METHODS 2013; 9:28. [PMID: 23849589 PMCID: PMC3728148 DOI: 10.1186/1746-4811-9-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/07/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND With the explosive numbers of sequences generated by next generation sequencing, the demand for high throughput screening to understand gene function has grown. Plant viral vectors have been widely used as tools in down-regulating plant gene expression. However, plant viral vectors can also express proteins in a very efficient manner and, therefore, can also serve as a valuable tool for characterizing proteins and their functions in metabolic pathways in planta. RESULTS In this study, we have developed a Gateway®-based high throughput viral vector cloning system from Narcissus Mosaic Virus (NMV). Using the reporter genes of GFP and GUS, and the plant genes PAP1 (an R2R3 MYB which activates the anthocyanin pathway) and selenium-binding protein 1 (SeBP), we show that NMV vectors and the model plant Nicotiana benthamiana can be used for efficient protein expression, protein subcellular localization and secondary metabolite production. CONCLUSIONS Our results suggest that not only can the plant viral vector system be employed for protein work but also can potentially be amenable to producing valuable secondary metabolites on a large scale, as the system does not require plant regeneration from seed or calli, which are stages where certain secondary metabolites can interfere with development.
Collapse
Affiliation(s)
- Huaibi Zhang
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Lei Wang
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Donald Hunter
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Charlotte Voogd
- PFR, Private Bag Private Bag 92169, Auckland 1142 New Zealand
| | - Nigel Joyce
- PFR, Private Bag 4704 Christchurch, New Zealand
| | - Kevin Davies
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| |
Collapse
|
7
|
Hwang MS, Lindenmuth BE, McDonald KA, Falk BW. Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnol 2012; 12:66. [PMID: 22999234 PMCID: PMC3582468 DOI: 10.1186/1472-6750-12-66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/11/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Using plant viruses to produce desirable proteins in plants allows for using non-transgenic plant hosts and if necessary, the ability to make rapid changes in the virus construct for increased or modified protein product yields. The objective of this work was the development of advanced CMV-based protein production systems to produce Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1) in non-transgenic plants. RESULTS We used two new Cucumber mosaic virus (CMV)-based vector systems for producing the green fluorescent protein (GFP) and more importantly, the Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1) in non-transgenic Nicotiana benthamiana plants. These are the inducible CMVin (CMV-based inducible) and the autonomously replicating CMVar (CMV-based advanced replicating) systems. We modified a binary plasmid containing the complete CMV RNA 3 cDNA to facilitate insertion of desired sequences, and to give modifications of the subgenomic mRNA 4 leader sequence yielding several variants. Quantitative RT-PCR and immunoblot analysis showed good levels of CMV RNA and coat protein accumulation for some variants of both CMVin and CMVar. When genes for E1 or GFP were inserted in place of the CMV coat protein, both were produced in plants as shown by fluorescence (GFP) and immunoblot analysis. Enzymatic activity assays showed that active E1 was produced in plants with yields up to ~ 11 μg/g fresh weight (FW) for specific variant constructs. We also compared in vitro CMV genomic RNA reassortants, and CMV RNA 3 mutants which lacked the C' terminal 33 amino acids of the 3A movement protein in attempts to further increase E1 yield. Taken together specific variant constructs yielded up to ~21 μg/g FW of E1 in non-transgenic plants. CONCLUSIONS Intact, active E1 was rapidly produced in non-transgenic plants by using agroinfiltration with the CMV-based systems. This reduces the time and cost compared to that required to generate transgenic plants and still gives the comparable yields of active E1. Our modifications described here, including manipulating cloning sites for foreign gene introduction, enhance the ease of use. Also, N. benthamiana, which is particularly suitable for agroinfiltration, is a very good plant for transient protein production.
Collapse
Affiliation(s)
- Min Sook Hwang
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Benjamin E Lindenmuth
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Present address: Bayer HealthCare Pharmaceuticals, 800 Dwight Way, Berkeley, CA, 94710, USA
| | - Karen A McDonald
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Michaud D. In consideration of GMOs: a virtual special issue of the Plant Biotechnology Journal. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:933-935. [PMID: 22066549 DOI: 10.1111/j.1467-7652.2011.00659.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|