1
|
Panda S, Chappell-Maor L, Alejandro de Haro L, Jozwiak A, Gharat SA, Kazachkova Y, Cai J, Vainer A, Toppino L, Sehrawat U, Wizler G, Pliner M, Meir S, Rotino GL, Yasuor H, Rogachev I, Aharoni A. Molecular mechanisms driving the unusual pigmentation shift during eggplant fruit development. PLANT COMMUNICATIONS 2025; 6:101321. [PMID: 40143551 DOI: 10.1016/j.xplc.2025.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Fruit pigmentation is a major signal that attracts frugivores to enable seed dispersal. In most fleshy fruit, green chlorophyll typically accumulates early in development and is replaced by a range of pigments during ripening. In species such as grape and strawberry, chlorophyll is replaced by red anthocyanins produced by the flavonoid biosynthetic pathway. Eggplant (Solanum melongena) is unique, as its fruit accumulates anthocyanins beginning from fruit set, and these are later replaced by the yellow flavonoid-pathway intermediate naringenin chalcone. To decipher the genetic regulation of this extraordinary pigmentation shift, we integrated mRNA and microRNA (miRNA) profiling data obtained from developing eggplant fruit. We discovered that SQUAMOSA PROMOTER BINDING-LIKE (i.e., SPL6a, SPL10, and SPL15), MYB1, and MYB2 transcription factors (TFs) regulate anthocyanin biosynthesis in early fruit development, whereas the MYB12 TF controls later accumulation of naringenin chalcone. We further show that miRNA157 and miRNA858 negatively regulate the expression of SPLs and MYB12, respectively. Taken together, our findings suggest that opposing and complementary expression of miRNAs and TFs controls the pigmentation switch in eggplant fruit skin. Intriguingly, despite the distinctive pigmentation pattern in eggplant, fruit development in other species makes use of homologous regulatory factors to control the temporal and spatial production of different pigment classes.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel; Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Louise Chappell-Maor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Luis Alejandro de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andrii Vainer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Laura Toppino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Urmila Sehrawat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guy Wizler
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Margarita Pliner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Hagai Yasuor
- Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Bravo-Vázquez LA, Castro-Pacheco AM, Pérez-Vargas R, Velázquez-Jiménez JF, Paul S. The Emerging Applications of Artificial MicroRNA-Mediated Gene Silencing in Plant Biotechnology. Noncoding RNA 2025; 11:19. [PMID: 40126343 PMCID: PMC11932238 DOI: 10.3390/ncrna11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Improving crop yield potential is crucial to meet the increasing demands of a rapidly expanding global population in an ever-changing and challenging environment. Therefore, different technological approaches have been proposed over the last decades to accelerate plant breeding. Among them, artificial microRNAs (amiRNAs) represent an innovative tool with remarkable potential to assist plant improvement. MicroRNAs (miRNAs) are a group of endogenous, small (20-24 nucleotides), non-coding RNA molecules that play a crucial role in gene regulation. They are associated with most biological processes of a plant, including reproduction, development, cell differentiation, biotic and abiotic stress responses, metabolism, and plant architecture. In this context, amiRNAs are synthetic molecules engineered to mimic the structure and function of endogenous miRNAs, allowing for the targeted silencing of specific nucleic acids. The current review explores the diverse applications of amiRNAs in plant biology and agriculture, such as the management of infectious agents and pests, the engineering of plant metabolism, and the enhancement of plant resilience to abiotic stress. Moreover, we address future perspectives on plant amiRNA-based gene silencing strategies, highlighting the need for further research to fully comprehend the potential of this technology and to translate its scope toward the widespread adoption of amiRNA-based strategies for plant breeding.
Collapse
Affiliation(s)
| | | | | | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| |
Collapse
|
3
|
Ma Z, Wang J, Li C. Research Progress on miRNAs and Artificial miRNAs in Insect and Disease Resistance and Breeding in Plants. Genes (Basel) 2024; 15:1200. [PMID: 39336791 PMCID: PMC11431169 DOI: 10.3390/genes15091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are expressed in a tissue- and temporal-specific manner during development. They have been found to be highly conserved during the evolution of different species. miRNAs regulate the expression of several genes in various organisms, with some regulating the expression of multiple genes with similar or completely unrelated functions. Frequent disease and insect pest infestations severely limit agricultural development. Thus, cultivating resistant crops via miRNA-directed gene regulation in plants, insects, and pathogens is an important aspect of modern breeding practices. To strengthen the application of miRNAs in sustainable agriculture, plant endogenous or exogenous miRNAs have been used for plant breeding. Consequently, the development of biological pesticides based on miRNAs has become an important avenue for future pest control methods. However, selecting the appropriate miRNA according to the desired target traits in the target organism is key to successfully using this technology for pest control. This review summarizes the progress in research on miRNAs in plants and other species involved in regulating plant disease and pest resistance pathways. We also discuss the molecular mechanisms of relevant target genes to provide new ideas for future research on pest and disease resistance and breeding in plants.
Collapse
Affiliation(s)
- Zengfeng Ma
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530007, China
| | - Jianyu Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Changyan Li
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
4
|
Singh H, Sekhon BS, Kumar P, Dhall RK, Devi R, Dhillon TS, Sharma S, Khar A, Yadav RK, Tomar BS, Ntanasi T, Sabatino L, Ntatsi G. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2294. [PMID: 37375919 DOI: 10.3390/plants12122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
To address the complex challenges faced by our planet such as rapidly changing climate patterns, food and nutritional insecurities, and the escalating world population, the development of hybrid vegetable crops is imperative. Vegetable hybrids could effectively mitigate the above-mentioned fundamental challenges in numerous countries. Utilizing genetic mechanisms to create hybrids not only reduces costs but also holds significant practical implications, particularly in streamlining hybrid seed production. These mechanisms encompass self-incompatibility (SI), male sterility, and gynoecism. The present comprehensive review is primarily focused on the elucidation of fundamental processes associated with floral characteristics, the genetic regulation of floral traits, pollen biology, and development. Specific attention is given to the mechanisms for masculinizing and feminizing cucurbits to facilitate hybrid seed production as well as the hybridization approaches used in the biofortification of vegetable crops. Furthermore, this review provides valuable insights into recent biotechnological advancements and their future utilization for developing the genetic systems of major vegetable crops.
Collapse
Affiliation(s)
- Hira Singh
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Bhallan Singh Sekhon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Rajinder Kumar Dhall
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Ruma Devi
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Suman Sharma
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Anil Khar
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| |
Collapse
|
5
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
6
|
Heterosis Breeding in Eggplant ( Solanum melongena L.): Gains and Provocations. PLANTS 2020; 9:plants9030403. [PMID: 32213925 PMCID: PMC7154857 DOI: 10.3390/plants9030403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/15/2023]
Abstract
Heterosis (or hybrid vigor) results in a hybrid’s phenotypic superiority over its founder parents for quantitative and qualitative traits. Hybrid vigor is defined by mechanisms such as dominant complementation, over-dominance, and epistasis. Eggplant (Solanum melongena L.) is an essential vegetable crop and a good source of dietary minerals, vitamins, and anthocyanins, with a high oxygen radical absorbance capacity and low caloric value. Given the economic and nutritional significance of eggplants, breeding efforts focus on developing high-yielding varieties—mostly F1 hybrids—with important traits. Studies indicate the successful exploitation of heterosis in the eggplant for a considerable improvement with respect to quantitative traits. In this direction, estimating heterosis for yield-related traits could well be useful for examining the most beneficial hybrid mix with the exploitation of top-quality hybrid. This review examines the current perception of the breeding and molecular aspects of heterosis in eggplants and cites several studies describing the mechanisms. Rendering and combining recent genomics, epigenetic, proteomic, and metabolomics studies present new prospects towards the understanding of the regulatory events of heterosis involved in the evolution and the domestication of the eggplant ideotype.
Collapse
|
7
|
Gualtieri C, Leonetti P, Macovei A. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:930. [PMID: 32655608 PMCID: PMC7325723 DOI: 10.3389/fpls.2020.00930] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs), defined as small non-coding RNA molecules, are fine regulators of gene expression. In plants, miRNAs are well-known for regulating processes spanning from cell development to biotic and abiotic stress responses. Recently, miRNAs have been investigated for their potential transfer to distantly related organisms where they may exert regulatory functions in a cross-kingdom fashion. Cross-kingdom miRNA transfer has been observed in host-pathogen relations as well as symbiotic or mutualistic relations. All these can have important implications as plant miRNAs can be exploited to inhibit pathogen development or aid mutualistic relations. Similarly, miRNAs from eukaryotic organisms can be transferred to plants, thus suppressing host immunity. This two-way lane could have a significant impact on understanding inter-species relations and, more importantly, could leverage miRNA-based technologies for agricultural practices. Additionally, artificial miRNAs (amiRNAs) produced by engineered plants can be transferred to plant-feeding organisms in order to specifically regulate their cross-kingdom target genes. This minireview provides a brief overview of cross-kingdom plant miRNA transfer, focusing on parasitic and mutualistic relations that can have an impact on agricultural practices and discusses some opportunities related to miRNA-based technologies. Although promising, miRNA cross-kingdom transfer remains a debated argument. Several mechanistic aspects, such as the availability, transfer, and uptake of miRNAs, as well as their potential to alter gene expression in a cross-kingdom manner, remain to be addressed.
Collapse
Affiliation(s)
- Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Paola Leonetti
- Institute for Sustainable Plant Protection, National Council of Research, Research Unit of Bari, Bari, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Anca Macovei,
| |
Collapse
|
8
|
Wang R, Jiang H, Zhou Z, Guo H, Dong J. Physiological and transcriptome analysis reveal molecular mechanism in Salvia miltiorrhiza leaves of near-isogenic male fertile lines and male sterile lines. BMC Genomics 2019; 20:780. [PMID: 31655539 PMCID: PMC6815445 DOI: 10.1186/s12864-019-6173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Our previous study finds that male sterility in Salvia miltiorrhiza could result in stunted growth and reduced biomass, but their molecular mechanisms have not yet been revealed. In this article, we investigate the underlying mechanism of male sterility and its impact on plant growth and metabolic yield by using physiological analysis and mRNA sequencing (RNA-Seq). Results In this study, transcriptomic and physiological analysis were performed to identify the mechanism of male sterility in mutants and its impact on plant growth and metabolic yield. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it is found that the pathways are mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analysis show that the chloroplast structure of male sterile mutants of S. miltiorrhiza is abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Expression level of 7 differentially expressed genes involved in photosynthesis-related pathways is downregulated in male sterile lines of S. miltiorrhiza, which could explain the corresponding phenotypic changes in chlorophyll fluorescence, chlorophyll content and leaf gas exchange. Transcriptomic analysis establishes the role of disproportionating enzyme 1 (DPE1) as catalyzing the degradation of starch, and the role of sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) as catalyzing the degradation of sucrose in the S. miltiorrhiza mutants. The results also confirm that phenylalanine ammonialyase (PAL) is involved in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) is an important enzyme catalyzing steps of flavonoid biosynthesis. Conclusions Our results from the physiological and transcriptome analysis reveal underlying mechanism of plant growth and metabolic yield in male sterile mutants, and provide insight into the crop yield of S. miltiorrhiza.
Collapse
Affiliation(s)
- Ruihong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Han Jiang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Ziyun Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Guo
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Diao P, Zhang Q, Sun H, Ma W, Cao A, Yu R, Wang J, Niu Y, Wuriyanghan H. miR403a and SA Are Involved in NbAGO2 Mediated Antiviral Defenses Against TMV Infection in Nicotiana benthamiana. Genes (Basel) 2019; 10:E526. [PMID: 31336929 PMCID: PMC6679004 DOI: 10.3390/genes10070526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qimeng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Aiping Cao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaojiao Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
10
|
Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene 2018; 689:202-209. [PMID: 30572098 DOI: 10.1016/j.gene.2018.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023]
Abstract
This review focuses on the current knowledge of transcription factors involved in Arabidopsis anther development. Anther development is a multistage process and controlled by a complex network of transcription factors acting in spatio/temporal manner. Molecular understanding of anther developmental pathway is critical from the perspective of controlling male fertility and hybrid generation. Generation of hybrid lines relies upon the effective mechanisms of controlling the process of pollen development and pollen release. Controlling any developmental program requires a good knowledge of regulatory pathways governing that developmental program. In a regulatory pathway, transcription factors represent an important link between the developmental program and response of genes to growth regulators and environmental signals. Therefore, identifying the entire cohort of anther specific transcription factors is an essential step towards the molecular understanding of regulatory networks involved in pollen formation and pollen release.
Collapse
Affiliation(s)
- Neetu Verma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
11
|
Yang Y, Bao S, Zhou X, Liu J, Zhuang Y. The key genes and pathways related to male sterility of eggplant revealed by comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:209. [PMID: 30249187 PMCID: PMC6154905 DOI: 10.1186/s12870-018-1430-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Male sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed with the RNA-seq technology. RESULTS A total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules might be responsible for MS, which was similar to hierarchical cluster analysis. CONCLUSIONS A number of genes and pathways associated with MS were found in this study. This study threw light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.
Collapse
Affiliation(s)
- Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Shengyou Bao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Yong Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| |
Collapse
|
12
|
Yang H, Qi Y, Goley ME, Huang J, Ivashuta S, Zhang Y, Sparks OC, Ma J, van Scoyoc BM, Caruano-Yzermans AL, King-Sitzes J, Li X, Pan A, Stoecker MA, Wiggins BE, Varagona MJ. Endogenous tassel-specific small RNAs-mediated RNA interference enables a novel glyphosate-inducible male sterility system for commercial production of hybrid seed in Zea mays L. PLoS One 2018; 13:e0202921. [PMID: 30138445 PMCID: PMC6107248 DOI: 10.1371/journal.pone.0202921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022] Open
Abstract
Hybrid crops produce higher yields than their inbred parents due to heterosis. For high purity of hybrid seeds, it is critical to eliminate self-pollination. Manual or mechanical removal of male parts (such as detasseling in maize) is labor-intensive, fuel and time-consuming, and can cause physical damage to female plants, resulting in significant seed yield reductions. Many male-sterility systems either require a maintainer for male-sterile line propagation or are often affected by environmental factors. Roundup® Hybridization System (RHS) utilizes glyphosate to induce male sterility, which effectively eliminates the need for maintainer lines and removal of male parts for commercial hybrid seed production. The first-generation RHS (RHS1) is based on low expression of a glyphosate-insensitive 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) in pollen. This report presents the second-generation RHS (RHS2) technology built on RNA interference (RNAi) combined with CP4 EPSPS. It utilizes maize endogenous male tissue-specific small interfering RNAs (mts-siRNAs) to trigger cleavage of the CP4 EPSPS mRNA specifically in tassels, resulting in glyphosate-sensitive male cells due to lack of the CP4 EPSPS protein. Male sterility is then induced by glyphosate application at the stages critical for pollen development, and the male-sterile plants are used as the female parent to produce hybrid seed. The endogenous mts-siRNAs are conserved across maize germplasms, and the inducible male sterility was replicated in representative germplasms through introgression of a CP4 EPSPS transgene containing the mts-siRNA target sequence. This technology combines the relative simplicity and convenience of a systemic herbicide spray methodology with targeted protein expression to create an inducible male sterility system for industrial production of row crop hybrid seeds in an environmentally-independent manner.
Collapse
Affiliation(s)
- Heping Yang
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Youlin Qi
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Mike E. Goley
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Jintai Huang
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Sergey Ivashuta
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Yuanji Zhang
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Oscar C. Sparks
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Jiyan Ma
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | | - Xin Li
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Aihong Pan
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | |
Collapse
|
13
|
Hidalgo D, Georgiev M, Marchev A, Bru-Martínez R, Cusido RM, Corchete P, Palazon J. Tailoring tobacco hairy root metabolism for the production of stilbenes. Sci Rep 2017; 7:17976. [PMID: 29269790 PMCID: PMC5740106 DOI: 10.1038/s41598-017-18330-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 μg L-1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 μg L-1 and 86.4 μg L-1, respectively), as well as its glucoside piceid (up to 339.7 μg L-1). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules.
Collapse
Affiliation(s)
- Diego Hidalgo
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Milen Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
| | - Andrey Marchev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Rosa M Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Purificación Corchete
- Department of Plant Physiology, Campus Miguel de Unamuno, University of Salamanca, E-37007, Salamanca, Spain
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Kajla S, Mukhopadhyay A, Pradhan AK. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PLoS One 2017; 12:e0182747. [PMID: 28787461 PMCID: PMC5546701 DOI: 10.1371/journal.pone.0182747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW) which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes-SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study.
Collapse
Affiliation(s)
- Sachin Kajla
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
15
|
Noman A, Fahad S, Aqeel M, Ali U, Amanullah, Anwar S, Baloch SK, Zainab M. miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 2017; 39:685-700. [PMID: 28238061 DOI: 10.1007/s10529-017-2302-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Cumulatively, biotic and abiotic stresses of various magnitudes can decrease the production of crops by 70%. miRNAs have emerged as a genetic tool with enormous potential that can be exploited to understand stress tolerance at the molecular level and eventually regulate stress in crops. Plant miRNA targets frequently fit into diverse families of TFs that control the expression of genes related to a certain trait. As key machinery in gene regulatory networks, it is agreed that a broad understanding of miRNAs will greatly increase our understanding of plant responses to environmental stresses. miRNA-led stress regulatory networks are being considered as novel tools for the development of abiotic stress tolerance in crops. At this time, we need to expand our knowledge about the modulatory role of miRNAs during environmental fluctuations. It has become exceedingly clear that with increased understanding of the role of miRNAs during stress, the techniques for using miRNA-mediated gene regulation to enhance plant stress tolerance will become more effective and reliable. In this review we present: (1) miRNAs as a potential avenue for the modulation of abiotic stresses, and (2) summarize the research progress regarding plant responses to stress. Current progress is explained through discussion of the identification and validation of several miRNAs that enhance crop tolerance of salinity, drought, etc., while missing links on different aspects of miRNAs related to abiotic stress tolerance are noted.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Muhammad Aqeel
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Ali
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amanullah
- Department of Agronomy, Faculty of Crop Production, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Sumera Anwar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shahbaz Khan Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Madiha Zainab
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| |
Collapse
|
16
|
Lombardo F, Kuroki M, Yao S, Shimizu H, Ikegaya T, Kimizu M, Ohmori S, Akiyama T, Hayashi T, Yamaguchi T, Koike S, Yatou O, Yoshida H. The superwoman1-cleistogamy2 mutant is a novel resource for gene containment in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:97-106. [PMID: 27336225 PMCID: PMC5253472 DOI: 10.1111/pbi.12594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/09/2016] [Accepted: 06/18/2016] [Indexed: 05/31/2023]
Abstract
Outcrossing between cultivated plants and their related wild species may result in the loss of favourable agricultural traits in the progeny or escape of transgenes in the environment. Outcrossing can be physically prevented by using cleistogamous (i.e. closed-flower) plants. In rice, flower opening is dependent on the mechanical action of fleshy organs called lodicules, which are generally regarded as the grass petal equivalents. Lodicule identity and development are specified by the action of protein complexes involving the SPW1 and OsMADS2 transcription factors. In the superwoman1-cleistogamy1 (spw1-cls1) mutant, SPW1 is impaired for heterodimerization with OsMADS2 and consequently spw1-cls1 shows thin, ineffective lodicules. However, low temperatures help stabilise the mutated SPW1/OsMADS2 heterodimer and lodicule development is restored when spw1-cls1 is grown in a cold environment, resulting in the loss of the cleistogamous phenotype. To identify a novel, temperature-stable cleistogamous allele of SPW1, targeted and random mutations were introduced into the SPW1 sequence and their effects over SPW1/OsMADS2 dimer formation were assessed in yeast two-hybrid experiments. In parallel, a novel cleistogamous allele of SPW1 called spw1-cls2 was isolated from a forward genetic screen. In spw1-cls2, a mutation leading to a change of an amino acid involved in DNA binding by the transcription factor was identified. Fertility of spw1-cls2 is somewhat decreased under low temperatures but unlike for spw1-cls1, the cleistogamous phenotype is maintained, making the line a safer and valuable genetic resource for gene containment.
Collapse
Affiliation(s)
- Fabien Lombardo
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
| | - Makoto Kuroki
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
- Division of Rice ResearchInstitute of Crop ScienceNAROIbarakiJapan
| | - Shan‐Guo Yao
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
- Present address: Center for Genome BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Hiroyuki Shimizu
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
| | - Tomohito Ikegaya
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
| | - Mayumi Kimizu
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Shinnosuke Ohmori
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Takashi Akiyama
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
| | - Takami Hayashi
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
| | - Tomoya Yamaguchi
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
- Present address: Agriculture, Forestry and Fisheries Research CouncilMinistry of Agriculture, Forestry and Fisheries of JapanTokyo100‐8950Japan
| | - Setsuo Koike
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
| | - Osamu Yatou
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Hitoshi Yoshida
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| |
Collapse
|
17
|
Millwood RJ, Moon HS, Poovaiah CR, Muthukumar B, Rice JH, Abercrombie JM, Abercrombie LL, Green WD, Stewart CN. Engineered selective plant male sterility through pollen-specific expression of the EcoRI restriction endonuclease. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1281-90. [PMID: 26503160 PMCID: PMC11389094 DOI: 10.1111/pbi.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/05/2015] [Accepted: 09/22/2015] [Indexed: 05/08/2023]
Abstract
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.
Collapse
Affiliation(s)
| | - Hong S Moon
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - John Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | | |
Collapse
|
18
|
Shafrin F, Das SS, Sanan-Mishra N, Khan H. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. PLANT MOLECULAR BIOLOGY 2015; 89:511-27. [PMID: 26453352 DOI: 10.1007/s11103-015-0385-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Artificial microRNAs (amiRNA) provide a new feature in the gene silencing era. Concomitantly, reducing the amount of lignin in fiber-yielding plants such as jute holds significant commercial and environmental potential, since this amount is inversely proportional to the quality of the fiber. The present study aimed at reducing the lignin content in jute, by introducing amiRNA based vectors for down-regulation of two monolignoid biosynthetic genes of jute, coumarate 3-hydroxylase (C3H) and ferulate 5-hydroxylase (F5H). The transgenic lines of F5H-amiRNA and C3H-amiRNA showed a reduced level of gene expression, which resulted in about 25% reduction in acid insoluble lignin content for whole stem and 12-15% reduction in fiber lignin as compared to the non-transgenic plants. The results indicate successful F5H-amiRNA and C3H-amiRNA transgenesis for lignin reduction in jute. This is likely to have far-reaching commercial implications and economic acceleration for jute producing countries.
Collapse
Affiliation(s)
- Farhana Shafrin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sudhanshu Sekhar Das
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 11006, India
| | - Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 11006, India.
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
19
|
A novel male sterility-fertility restoration system in plants for hybrid seed production. Sci Rep 2015; 5:11274. [PMID: 26073981 PMCID: PMC4466886 DOI: 10.1038/srep11274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/20/2015] [Indexed: 11/08/2022] Open
Abstract
Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.
Collapse
|
20
|
Gressel J. Dealing with transgene flow of crop protection traits from crops to their relatives. PEST MANAGEMENT SCIENCE 2015; 71:658-667. [PMID: 24977384 DOI: 10.1002/ps.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Genes regularly move within species, to/from crops, as well as to their con- specific progenitors, feral and weedy forms ('vertical' gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non-transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with.
Collapse
|
21
|
Hong Y, Jackson S. Floral induction and flower formation--the role and potential applications of miRNAs. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:282-92. [PMID: 25641615 DOI: 10.1111/pbi.12340] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 05/08/2023]
Abstract
The multiple regulatory pathways controlling flowering and flower development are varied and complex, and they require tight control of gene expression and protein levels. MicroRNAs (miRNAs) act at both the transcriptional and post-transcriptional level to regulate key genes involved in flowering-related processes such as the juvenile-adult transition, the induction of floral competence and flower development. Many different miRNA families are involved in these processes and their roles are summarized in this review, along with potential biotechnological applications for miRNAs in controlling processes related to flowering and flower development.
Collapse
Affiliation(s)
- Yiguo Hong
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | |
Collapse
|
22
|
Dalakouras A, Dadami E, Wassenegger M. Engineering viroid resistance. Viruses 2015; 7:634-46. [PMID: 25674769 PMCID: PMC4353907 DOI: 10.3390/v7020634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-encapsidated, non-coding, circular, single-stranded RNAs (ssRNAs). They are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast of plant cells, respectively. Viroids have a wide host range, including crop and ornamental plants, and can cause devastating diseases with significant economic losses. Thus, several viroids are world-wide, classified as quarantine pathogens and, hence, there is an urgent need for the development of robust antiviroid strategies. RNA silencing-based technologies seem to be a promising tool in this direction. Here, we review the recent advances concerning the complex interaction of viroids with the host's RNA silencing machinery, evaluate past and present antiviroid approaches, and finally suggest alternative strategies that could potentially be employed in the future in order to achieve transgenic and non-transgenic viroid-free plants.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Elena Dadami
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, 67435, Germany.
| | - Michael Wassenegger
- RLP AgroScience GmbH, AIPlanta-Institute for Plant Research, Neustadt, Germany and Centre for Organisational Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany.
| |
Collapse
|
23
|
Yamada T, Mori Y, Yasue K, Maruyama N, Kitamura K, Abe J. Knockdown of the 7S globulin subunits shifts distribution of nitrogen sources to the residual protein fraction in transgenic soybean seeds. PLANT CELL REPORTS 2014; 33:1963-76. [PMID: 25120001 DOI: 10.1007/s00299-014-1671-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/27/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE A platform of gene silencing by amiRNA had been established in fertile transgenic soybean. We demonstrated that knockdown of storage protein shifted the distribution of nitrogen sources in soybean seeds. Artificial microRNAs (amiRNAs) were designed using the precursor sequence of the endogenous soybean (Glycine max L. Merrill) miRNA gma-miR159a and expressed in transgenic soybean plants to suppress the biosynthesis of 7S globulin, which is one of the major storage proteins. Seed-specific expression of these amiRNAs (amiR-7S) resulted in a strong suppression of 7S globulin subunit genes and decreased accumulation of the 7S globulin subunits in seeds. Thus, the results demonstrate that a platform for gene silencing by amiRNA was first developed in fertile transgenic soybean plants. There was no difference in nitrogen, carbon, and lipid contents between amiR-7S and control seeds. Four protein fractions were collected from defatted mature seeds on the basis of solubility at different pH to examine the distribution of nitrogen sources and compensatory effects. In the whey and lipophilic fractions, nitrogen content was similar in amiR-7S and control seeds. Nitrogen content was significantly decreased in the major soluble protein fraction and increased in the residual fraction (okara) of the amiR-7S seeds. Amino acid analysis revealed that increased nitrogen compounds in okara were proteins or peptides rather than free amino acids. Our study indicates that the decrease in 7S globulin subunits shifts the distribution of nitrogen sources to okara in transgenic soybean seeds.
Collapse
Affiliation(s)
- Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan,
| | | | | | | | | | | |
Collapse
|
24
|
Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants: progress and perspectives. PLANT MOLECULAR BIOLOGY 2014; 86:1-18. [PMID: 25022825 DOI: 10.1007/s11103-014-0224-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/05/2014] [Indexed: 05/24/2023]
Abstract
Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.
Collapse
Affiliation(s)
- Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | | | | |
Collapse
|
25
|
Guo Y, Han Y, Ma J, Wang H, Sang X, Li M. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida). PLoS One 2014; 9:e98783. [PMID: 24897430 PMCID: PMC4045805 DOI: 10.1371/journal.pone.0098783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
Although artificial microRNA (amiRNA) technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1), based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5′ RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3′-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of amiRNAs in gene silencing in plants.
Collapse
Affiliation(s)
- Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yao Han
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Huiping Wang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xianchun Sang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
26
|
Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 2014; 9:939-49. [PMID: 24675734 DOI: 10.1038/nprot.2014.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Artificial miRNA (amiRNA) technology offers highly specific gene silencing in diverse plant species. The principal challenge in amiRNA application is to select potent amiRNAs from hundreds of bioinformatically designed candidates to enable maximal target gene silencing at the protein level. To address this issue, we developed the epitope-tagged protein-based amiRNA (ETPamir) screens, in which single or multiple potential target genes encoding epitope-tagged proteins are constitutively or inducibly coexpressed with individual amiRNA candidates in plant protoplasts. Accumulation of tagged proteins, detected by immunoblotting with commercial tag antibodies, inversely and quantitatively reflects amiRNA efficacy in vivo. The core procedure, from protoplast isolation to identification of optimal amiRNA, can be completed in 2-3 d. The ETPamir screens circumvent the limited availability of plant antibodies and the complexity of plant amiRNA silencing at target mRNA and/or protein levels. The method can be extended to verify predicted target genes for endogenous plant miRNAs.
Collapse
|
27
|
Belide S, Petrie JR, Shrestha P, Singh SP. Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing. FRONTIERS IN PLANT SCIENCE 2012; 3:168. [PMID: 22866055 PMCID: PMC3408671 DOI: 10.3389/fpls.2012.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/07/2012] [Indexed: 05/03/2023]
Abstract
Various post transcriptional gene silencing strategies have been developed and exploited to study gene function or engineer disease resistance. The recently developed artificial microRNA strategy is an alternative method of effectively silencing target genes. The Δ12-desaturase (FAD2), Fatty acid elongase (FAE1), and Fatty acyl-ACP thioesterase B (FATB) were targeted with amiR159b-based constructs in Arabidopsisthaliana to evaluate changes in oil composition when expressed with the seed-specific Brassica napus truncated napin (FP1) promoter. Fatty acid profiles from transgenic homozygous seeds reveal that the targeted genes were silenced. The down-regulation of the AtFAD-2 gene substantially increased oleic acid from the normal levels of ∼15% to as high as 63.3 and reduced total PUFA content (18:2(Δ9,12) + 18:3(Δ9,12,15) + 20:2(Δ11,14) + 20:3(Δ11,14,17)) from 46.8 to 4.8%. Δ12-desaturase activity was reduced to levels as low as those in the null fad-2-1 and fad-2-2 mutants. Silencing of the FAE1 gene resulted in the reduction of eicosenoic acid (20:1(Δ11)) to 1.9 from 15.4% and silencing of FATB resulted in the reduction of palmitic acid (16:0) to 4.4% from 8.0%. Reduction in FATB activity is comparable with a FATB knock-out mutant. These results demonstrate for the first time amiR159b constructs targeted against three endogenous seed-expressed genes are clearly able to down-regulate and generate genotypic changes that are inherited stably over three generations.
Collapse
Affiliation(s)
- Srinivas Belide
- Food Futures National Research Flagship, CSIRO Plant IndustryCanberra, ACT, Australia
- Department of Biotechnology, Sreenidhi Institute of Science and TechnologyHyderabad, Andhra Pradesh, India
| | | | - Pushkar Shrestha
- Food Futures National Research Flagship, CSIRO Plant IndustryCanberra, ACT, Australia
| | - Surinder Pal Singh
- Food Futures National Research Flagship, CSIRO Plant IndustryCanberra, ACT, Australia
| |
Collapse
|
28
|
Huang MD, Hsing YIC, Huang AHC. Transcriptomes of the anther sporophyte: availability and uses. PLANT & CELL PHYSIOLOGY 2011; 52:1459-66. [PMID: 21743085 PMCID: PMC3172567 DOI: 10.1093/pcp/pcr088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/30/2011] [Indexed: 05/22/2023]
Abstract
An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics.
Collapse
Affiliation(s)
- Ming-Der Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| | | | - Anthony H. C. Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| |
Collapse
|
29
|
Nizampatnam NR, Dinesh Kumar V. Intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restores male fertility in transgenic male sterile tobacco plants expressing orfH522. PLANT MOLECULAR BIOLOGY 2011; 76:557-73. [PMID: 21584859 DOI: 10.1007/s11103-011-9789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/07/2011] [Indexed: 05/27/2023]
Abstract
The present work was aimed at developing vector construct(s) suitable for restoring fertility in transgenic male sterile tobacco plants expressing male-sterility-inducing ORFH522 in tapetal cell layer (Nizampatnam et al. Planta 229:987-1001, 2009). PTGS vectors that could produce either intron spliced hairpin RNA against the orfH522 or induce silencing of orfH522 by heterologous 3'UTR region were developed using the selected 316 bp (orf316) fragment of orfH522. The constructs were independently mobilized into Agrobacterium and used for transforming tobacco. The T(1) generation plants carrying the restorer gene cassettes in homozygous condition were identified and crossed with the male sterile transgenic tobacco plants to obtain the hybrid seeds. PCR analysis of hybrid plants indicated segregation for the sterility inducing cassette while all the plants carried the restorer cassette. Hybrid plants produced fertile pollen grains and formed normal capsules upon selfing. Further molecular analyses of these hybrid plants with RT-PCR, Northern blotting and siRNA detection, revealed that intron interrupted hairpin RNA (ihp-RNA) mediated gene silencing was more effective compared to silencing by heterologous 3'UTR (SHUTR) as indicated by the complete degradation of orfH522 transcripts and formation of higher levels of orf316 specific siRNA molecules in plants carrying ihp-RNA restorer construct. Segregation analyses of F(2) (selfed hybrid) plants confirmed the co-segregation of gene cassettes and the traits in Mendelian di-hybrid ratio (9:3:3:1). Taken together, the results established that intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restored fertility in transgenic male sterile tobacco plants expressing orfH522 and ihp-RNA was more efficient in silencing orfH522 transcripts.
Collapse
|
30
|
Sablok G, Pérez-Quintero AL, Hassan M, Tatarinova TV, López C. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun 2011; 406:315-9. [PMID: 21329663 DOI: 10.1016/j.bbrc.2011.02.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 01/03/2023]
Abstract
In recent years, endogenous microRNAs have been described as important regulators of gene expression in eukaryotes. Artificial microRNAs (amiRNAs) represent a recently developed miRNA-based strategy to silence endogenous genes. amiRNAs can be created by exchanging the miRNA/miRNA(∗) sequence within a miRNA precursor with a sequence designed to match the target gene, this is possible as long as the secondary RNA structure of the precursor is kept intact. In this review, we summarize the basic methodologies to design amiRNAs and detail their applications in plants genetic functional studies as well as their potential for crops genetic improvement.
Collapse
Affiliation(s)
- Gaurav Sablok
- Key Lab of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Shizishan, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|