1
|
Killer HE, Pircher A. Are Generalized Reduced Cerebrospinal Fluid Dynamics and Optic Nerve Sheath Compartmentation Sequential Steps in the Pathogenesis of Normal-Tension Glaucoma? [Response to Letter]. Eye Brain 2021; 13:157-158. [PMID: 34079415 PMCID: PMC8164671 DOI: 10.2147/eb.s319543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Hanspeter E Killer
- Department of Biomedicine, University Hospital Basel & University Basel, Basel, Switzerland
| | - Achmed Pircher
- Department of Neuroscience/Ophthalmology, Uppsala University, Uppsala, Sweden.,Department of Ophthalmology, University Hospital Basel & University Basel, Basel, Switzerland
| |
Collapse
|
2
|
Duffy KB, Ray B, Lahiri DK, Tilmont EM, Tinkler GP, Herbert RL, Greig NH, Ingram DK, Ottinger MA, Mattison JA. Effects of Reducing Norepinephrine Levels via DSP4 Treatment on Amyloid-β Pathology in Female Rhesus Macaques (Macaca Mulatta). J Alzheimers Dis 2020; 68:115-126. [PMID: 30689563 DOI: 10.3233/jad-180487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The degeneration in the locus coeruleus associated with Alzheimer's disease suggests an involvement of the noradrenergic system in the disease pathogenesis. The role of depleted norepinephrine was tested in adult and aged rhesus macaques to develop a potential model for testing Alzheimer's disease interventions. Monkeys were injected with the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) or vehicle at 0, 3, and 6 months; brains were harvested at 9 months. Reduced norepinephrine in the locus coeruleus was accompanied by decreased dopamine β-hydroxylase staining and increased amyloid-β load in the aged group, and the proportion of potentially toxic amyloid-β42 peptide was increased. Immunohistochemistry revealed no effects on microglia or astrocytes. DSP4 treatment altered amyloid processing, but these changes were not associated with the induction of chronic neuroinflammation. These findings suggest norepinephrine deregulation is an essential component of a nonhuman primate model of Alzheimer's disease, but further refinement is necessary.
Collapse
Affiliation(s)
- Kara B Duffy
- Animal and Avian Sciences Department, University of Maryland, College Park, MD, USA
| | - Balmiki Ray
- Myriad Neuroscience (Assurex Health), Mason, OH, USA (present address).,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward M Tilmont
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Gregory P Tinkler
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Richard L Herbert
- Clinical Medicine Branch, National Institute of Allergy and Infectious Disease, NIH, Dickerson, MD, USA
| | - Nigel H Greig
- Translational Gerontology Branch, NIA/NIH, Baltimore, MD, USA
| | - Donald K Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Mary Ann Ottinger
- Animal and Avian Sciences Department, University of Maryland, College Park, MD, USA.,Department of Biology and Biochemistry, University of Houston, Houston, TX, USA (present address)
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| |
Collapse
|
3
|
McAllister JP, Williams MA, Walker ML, Kestle JRW, Relkin NR, Anderson AM, Gross PH, Browd SR. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 2015; 123:1427-38. [PMID: 26090833 DOI: 10.3171/2014.12.jns132352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Building on previous National Institutes of Health-sponsored symposia on hydrocephalus research, "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes" was held in Seattle, Washington, July 9-11, 2012. Plenary sessions were organized into four major themes, each with two subtopics: Causes of Hydrocephalus (Genetics and Pathophysiological Modifications); Diagnosis of Hydrocephalus (Biomarkers and Neuroimaging); Treatment of Hydrocephalus (Bioengineering Advances and Surgical Treatments); and Outcome in Hydrocephalus (Neuropsychological and Neurological). International experts gave plenary talks, and extensive group discussions were held for each of the major themes. The conference emphasized patient-centered care and translational research, with the main objective to arrive at a consensus on priorities in hydrocephalus that have the potential to impact patient care in the next 5 years. The current state of hydrocephalus research and treatment was presented, and the following priorities for research were recommended for each theme. 1) Causes of Hydrocephalus-CSF absorption, production, and related drug therapies; pathogenesis of human hydrocephalus; improved animal and in vitro models of hydrocephalus; developmental and macromolecular transport mechanisms; biomechanical changes in hydrocephalus; and age-dependent mechanisms in the development of hydrocephalus. 2) Diagnosis of Hydrocephalus-implementation of a standardized set of protocols and a shared repository of technical information; prospective studies of multimodal techniques including MRI and CSF biomarkers to test potential pharmacological treatments; and quantitative and cost-effective CSF assessment techniques. 3) Treatment of Hydrocephalus-improved bioengineering efforts to reduce proximal catheter and overall shunt failure; external or implantable diagnostics and support for the biological infrastructure research that informs these efforts; and evidence-based surgical standardization with longitudinal metrics to validate or refute implemented practices, procedures, or tests. 4) Outcome in Hydrocephalus-development of specific, reliable batteries with metrics focused on the hydrocephalic patient; measurements of neurocognitive outcome and quality-of-life measures that are adaptable, trackable across the growth spectrum, and applicable cross-culturally; development of comparison metrics against normal aging and sensitive screening tools to diagnose idiopathic normal pressure hydrocephalus against appropriate normative age-based data; better understanding of the incidence and prevalence of hydrocephalus within both pediatric and adult populations; and comparisons of aging patterns in adults with hydrocephalus against normal aging patterns.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Michael A Williams
- Department of Neurology, The Sandra and Malcolm Berman Brain & Spine Institute and Adult Hydrocephalus Center, Sinai Hospital, Baltimore, Maryland
| | - Marion L Walker
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - John R W Kestle
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - Norman R Relkin
- Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Amy M Anderson
- Department of Neurosurgery, Seattle Children's Hospital, Seattle, Washington; and
| | | | - Samuel R Browd
- Departments of Neurosurgery and Bioengineering, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | | |
Collapse
|
4
|
Affiliation(s)
- A H V Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK.
| |
Collapse
|