1
|
Li Y, Zhang M, Li Y, Shen Y, Wang X, Li X, Wang Y, Yu T, Lv J, Qin Y. Flagellar hook protein FlgE promotes macrophage activation and atherosclerosis by targeting ATP5B. Atherosclerosis 2024; 390:117429. [PMID: 38278062 DOI: 10.1016/j.atherosclerosis.2023.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND AND AIMS Pseudomonas aeruginosa (P. aeruginosa) infections are strongly linked to the development of cardiovascular disease and atherosclerosis; however, the underlying mechanisms remain unclear. We previously confirmed that the flagellar hook protein FlgE in P. aeruginosa has immunostimulatory effects. This study investigated the effects and mechanisms of action of FlgE on atherogenesis. METHODS ApoE-/- mice were intravenously challenged with FlgE or FlgEM recombinant proteins for eight weeks. A murine model of chronic lung colonization was established using beads containing either mutable- or wild-type bacteria. Aortic sinus sections were stained to assess atherosclerosis progression. THP-1 macrophages exposed to FlgE or FlgEM were evaluated for their effects on lipid uptake and inflammation in vitro. Western blotting and pull-down assays were used to identify the binding proteins and signaling pathways involved, and specific blocking experiments were performed to confirm these effects. RESULTS FlgE accelerated atherosclerosis progression by triggering lipid deposition and inflammatory responses in high-fat diet (HFD)-fed ApoE-/- mice. In comparison to infection with wild-type PAO1, infection with PAO1/flgEΔBmF resulted in reduced atherosclerosis. Mechanistic analysis indicated that FlgE exacerbated lipoprotein uptake and foam cell formation by upregulating SR-A1 expression. Moreover, FlgE activated NF-κB and MAPK signaling, which subsequently led to inflammatory responses in THP-1-derived macrophages. Pull-down assays revealed that FlgE directly interacted with ATP5B, whereas blocking ATP5B attenuated FlgE-induced responses in macrophages. CONCLUSIONS FlgE induces macrophage lipid uptake and pro-inflammatory responses mediated by ATP5B/NF-kB/AP-1 signaling, which eventually results in atherosclerosis. These findings support the development of therapeutic strategies for P. aeruginosa infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Min Zhang
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Yanmeng Li
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Ying Shen
- National Clinical Research Center for Hematologic Disease, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Suchow University, Suzhou, 215006, China
| | - Xiaoping Wang
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, China
| | - Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China.
| | - Yan Qin
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China.
| |
Collapse
|
2
|
Fu Y, Deng Y, Zhang J, Chua SL, Khoo BL. Biofilms exacerbate atherogenesis through macrophage-induced inflammatory responses in a fibrous plaque microsystem model. Acta Biomater 2023; 168:333-345. [PMID: 37385520 DOI: 10.1016/j.actbio.2023.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Microbes have been implicated in atherosclerosis development and progression, but the impact of bacterial-based biofilms on fibrous plaque rupture remains poorly understood. RESULTS Here, we developed a comprehensive atherosclerotic model to reflect the progression of fibrous plaque under biofilm-induced inflammation (FP-I). High expressions of biofilm-specific biomarkers algD, pelA and pslB validated the presence of biofilms. Biofilm promotes the polarization of macrophages towards a pro-inflammatory (M1) phenotype, as demonstrated by an increase in M1 macrophage-specific marker CD80 expression in CD68+ macrophages. The increase in the number of intracellular lipid droplets (LDs) and foam cell percentage highlighted the potential role of biofilms on lipid synthesis or metabolic pathways in macrophage-derived foam cells. In addition, collagen I production by myofibroblasts associated with the fibrous cap was significantly reduced along with the promotion of apoptosis of myofibroblasts, indicating that biofilms affect the structural integrity of the fibrous cap and potentially undermine its strength. CONCLUSION We validated the unique role of biofilm-based inflammation in exacerbating fibrous plaque damage in the FP-I model, increasing fibrous plaque instability and risk of thrombosis. Our results lay the foundation for mechanistic studies of the role of biofilms in fibrous plaques, allowing the evaluation of preclinical combination strategies for drug therapy. STATEMENT OF SIGNIFICANCE A microsystem-based model was developed to reveal interactions in fibrous plaque during biofilm-induced inflammation (FP-I). Real-time assessment of biofilm formation and its role in fibrous plaque progression was achieved. The presence of biofilms enhanced the expression of pro-inflammatory (M1) specific marker CD80, lipid droplets, and foam cells and reduced anti-inflammatory (M2) specific marker CD206 expression. Fibrous plaque exposure to biofilm-based inflammation reduced collagen I expression and increased apoptosis marker Caspase-3 expression significantly. Overall, we demonstrate the unique role of biofilm-based inflammation in exacerbating fibrous plaque damage in the FP-I model, promoting fibrous plaque instability and enhanced thrombosis risk. Our findings lay the groundwork for mechanistic studies, facilitating the evaluation of preclinical drug combination strategies.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong
| | - Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; Shenzhen Key Laboratory of Food Biological Safety Control; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE); City University of Hong Kong - Futian Shenzhen Research Institute.
| |
Collapse
|
3
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
4
|
Li Y, Shen Y, Zheng Y, Ji S, Wang M, Wang B, Han Q, Tian Y, Wang Y. Flagellar Hook Protein FlgE Induces Microvascular Hyperpermeability via Ectopic ATP Synthase β on Endothelial Surface. Front Cell Infect Microbiol 2021; 11:724912. [PMID: 34796124 PMCID: PMC8593108 DOI: 10.3389/fcimb.2021.724912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated the immunostimulatory efficacy of Pseudomonas aeruginosa flagellar hook protein FlgE on epithelial cells, presumably via ectopic ATP synthases or subunits ATP5B on cell membranes. Here, by using recombinant wild-type FlgE, mutant FlgE (FlgEM; bearing mutations on two postulated critical epitopes B and F), and a FlgE analog in pull-down assay, Western blotting, flow cytometry, and ELISA, actual bindings of FlgE proteins or epitope B/F peptides with ATP5B were all confirmed. Upon treatment with FlgE proteins, human umbilical vein endothelial cells (HUVECs) and SV40-immortalized murine vascular endothelial cells manifested decreased proliferation, migration, tube formation, and surface ATP production and increased apoptosis. FlgE proteins increased the permeability of HUVEC monolayers to soluble large molecules like dextran as well as to neutrophils. Immunofluorescence showed that FlgE induced clustering and conjugation of F-actin in HUVECs. In Balb/c-nude mice bearing transplanted solid tumors, FlgE proteins induced a microvascular hyperpermeability in pinna, lungs, tumor mass, and abdominal cavity. All effects observed in FlgE proteins were partially or completely impaired in FlgEM proteins or blocked by pretreatment with anti-ATP5B antibodies. Upon coculture of bacteria with HUVECs, FlgE was detectable in the membrane and cytosol of HUVECs. It was concluded that FlgE posed a pathogenic ligand of ectopic ATP5B that, upon FlgE-ATP5B coupling on endothelial cells, modulated properties and increased permeability of endothelial layers both in vitro and in vivo. The FlgE-ectopic ATP5B duo might contribute to the pathogenesis of disorders associated with bacterial infection or ectopic ATP5B-positive cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Department of Laboratory Examination, People's Hospital of Rizhao City, Rizhao, China
| | - Ying Shen
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yudan Zheng
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Shundong Ji
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Mengru Wang
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Beibei Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingzhen Han
- Department of Laboratory Examination, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yufeng Tian
- Department of Laboratory Examination, People's Hospital of Rizhao City, Rizhao, China
| | - Yiqiang Wang
- The MOH Key Lab of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Central Lab, Xiang'an Hospital of Xiamen University, Xiamen University Medical Center, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Hotinger JA, May AE. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens 2019; 8:pathogens8040257. [PMID: 31766664 PMCID: PMC6963218 DOI: 10.3390/pathogens8040257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
The type III secretion system (T3SS) is a conserved virulence factor used by many Gram-negative pathogenic bacteria and has become an important target for anti-virulence drugs. Most T3SS inhibitors to date have been discovered using in vitro screening assays. Pharmacokinetics and other important characteristics of pharmaceuticals cannot be determined with in vitro assays alone. In vivo assays are required to study pathogens in their natural environment and are an important step in the development of new drugs and vaccines. Animal models are also required to understand whether T3SS inhibition will enable the host to clear the infection. This review covers selected animal models (mouse, rat, guinea pig, rabbit, cat, dog, pig, cattle, primates, chicken, zebrafish, nematode, wax moth, flea, fly, and amoeba), where T3SS activity and infectivity have been studied in relation to specific pathogens (Escherichia coli, Salmonella spp., Pseudomonas spp., Shigella spp., Bordetella spp., Vibrio spp., Chlamydia spp., and Yersinia spp.). These assays may be appropriate for those researching T3SS inhibition.
Collapse
|
6
|
Vadakkan K, Hemapriya J, Selvaraj V. Quorum quenching intervened in vivo attenuation and immunological clearance enhancement by Solanum torvum root extract against Pseudomonas aeruginosa instigated pneumonia in Sprague Dawley rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Mougeot JLC, Stevens CB, Paster BJ, Brennan MT, Lockhart PB, Mougeot FKB. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J Oral Microbiol 2017; 9:1281562. [PMID: 28326156 PMCID: PMC5328378 DOI: 10.1080/20002297.2017.1281562] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/25/2022] Open
Abstract
An association between oral bacteria and atherosclerosis has been postulated. A limited number of studies have used 16S RNA gene sequencing-based metagenomics approaches to identify bacteria at the species level from atherosclerotic plaques in arterial walls. The objective of this study was to establish detailed oral microbiome profiles, at both genus and species level, of clinically healthy coronary and femoral artery tissues from patients with atherosclerosis. Tissue specimens were taken from clinically non-atherosclerotic areas of coronary or femoral arteries used for attachment of bypass grafts in 42 patients with atherosclerotic cardiovascular disease. Bacterial DNA was sequenced using the MiSeq platform, and sequence reads were screened in silico for nearly 600 oral species using the HOMINGS ProbeSeq species identification program. The number of sequence reads matched to species or genera were used for statistical analyses. A total of 230 and 118 species were detected in coronary and femoral arteries, respectively. Unidentified species detected by genus-specific probes consisted of 45 and 30 genera in coronary and in femoral artery tissues, respectively. Overall, 245 species belonging to 95 genera were detected in coronary and femoral arteries combined. The most abundant species were Porphyromonas gingivalis, Enterococcus faecalis, and Finegoldia magna based on species probes. Porphyromonas, Escherichia, Staphylococcus, Pseudomonas, and Streptococcus genera represented 88.5% mean relative abundance based on combined species and genus probe detections. Porphyromonas was significantly more abundant than Escherichia (i.e. 46.8% vs. 19.3%; p = 0.0005). This study provides insight into the presence and types of oral microbiome bacterial species found in clinically non-atherosclerotic arteries.
Collapse
Affiliation(s)
- J-L C Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System , Charlotte , NC , USA
| | - C B Stevens
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System , Charlotte , NC , USA
| | - B J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - M T Brennan
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System , Charlotte , NC , USA
| | - P B Lockhart
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System , Charlotte , NC , USA
| | - F K B Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System , Charlotte , NC , USA
| |
Collapse
|
8
|
Hansen GM, Belstrøm D, Nilsson M, Helqvist S, Nielsen CH, Holmstrup P, Tolker-Nielsen T, Givskov M, Hansen PR. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction. PLoS One 2016; 11:e0168771. [PMID: 28030624 PMCID: PMC5193428 DOI: 10.1371/journal.pone.0168771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined.
Collapse
Affiliation(s)
- Gorm Mørk Hansen
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- * E-mail:
| | - Daniel Belstrøm
- Section of Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Martin Nilsson
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Palle Holmstrup
- Section of Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Singapore Center on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Lawson JS. Multiple Infectious Agents and the Origins of Atherosclerotic Coronary Artery Disease. Front Cardiovasc Med 2016; 3:30. [PMID: 27672638 PMCID: PMC5018484 DOI: 10.3389/fcvm.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
Although deaths due to atherosclerotic coronary artery disease (ACAD) have fallen dramatically during the past 50 years, ACAD remains as the leading cause of death in all continents, except Africa, where deaths due to infections are still dominant. Although food and nutrition have a proven role in atherosclerosis, the underlying causes of ACAD remain unknown. This is despite a century of intensive research dominated by investigations into the saturated fat hypothesis. In this review, it is hypothesized that the rise and fall in ACAD during the past 100 years is primarily due to the parallel rise and fall in the prevalence of coronary atheroma, the underlying disease. It is further hypothesized that infectious pathogens initiate atherosclerosis mainly during infancy and childhood. It is speculated that widespread use of antibiotics and vaccines against bacterial and viral infections may be the reason for the dramatic fall in coronary atheroma and ACAD during the past 50 years. The relevant evidence and a working hypothesis are included in this review.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Sampedro I, Kato J, Hill JE. Elastin degradation product isodesmosine is a chemoattractant for Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1496-503. [PMID: 25855762 PMCID: PMC10727130 DOI: 10.1099/mic.0.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that Pseudomonas aeruginosa PAO1 is chemotactic towards proteinogenic amino acids, however, the chemotaxis response of this strain towards non-proteinogenic amino acids and the specific chemoreceptors involved in this response are essentially unknown. In this study, we analysed the chemotactic response of PAO1 towards two degradation products of elastin, the lysine-rich, non-proteinogenic amino acids, desmosine and isodesmosine. We observed that isodesmosine, a potential biomarker for different diseases, served as a chemoattractant for PAO1. A screen of 251methyl-accepting chemotaxis proteins mutants of PAO1 identified PctA as the chemoreceptor for isodesmosine. We also showed that the positive chemotactic response to isodesmosine is potentially common by demonstrating chemoattraction in 12 of 15 diverse (in terms of source of isolation) clinical isolates, suggesting that the chemotactic response to this non-proteinogenic amino acid might be a conserved feature of acute infection isolates and thus could influence the colonization of potential infection sites.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Jane E. Hill
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
11
|
Ranjani J, Pushpanathan M, Mahesh A, Niraimathi M, Gunasekaran P, Rajendhran J. Pseudomonas aeruginosa PAO1 induces distinct cell death mechanisms in H9C2 cells and its differentiated form. J Basic Microbiol 2015; 55:1191-202. [PMID: 26011149 DOI: 10.1002/jobm.201500037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/02/2015] [Indexed: 12/23/2022]
Abstract
Bacterial infections in myocardium may lead to the myocardial damage, which may progress to dilated cardiomyopathy and cardiac arrest. Pseudomonas aeruginosa has been reported to cause myocarditis and other systemic infections especially in immunocompromised patients. To understand the cellular responses during the establishment of infection in myocardium, we challenged differentiated H9C2 cells with P. aeruginosa PAO1. We also did comparison studies with infected undifferentiated form of H9C2 cells. Invasion studies revealed that PAO1 can invade both forms of cells and is able to survive and replicate within the host. Internalization of PAO1 was confirmed by live cell imaging and flow cytometry analysis. Though invasion of the pathogen triggered an increased ROS production in the host cells at earlier post-infection periods, it was decreased at later post-infection periods. Invasion of PAO1 induced cell death through apoptosis in differentiated H9C2 cells. Significant decrease in cell size, formation of polarized mitochondria, and nuclear fragmentation were observed in the infected differentiated cells. On the contrary, cell death preceded by multinucleation was observed in infected undifferentiated H9C2 cells. Morphological markers such as multinuclei and micro nuclei were observed. Cell cycle arrest in G2/M phase corroborates that the undifferentiated H9C2 cells experienced cell death preceded by multinucleation.
Collapse
Affiliation(s)
- Jothi Ranjani
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Muthuirulan Pushpanathan
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Ayyavu Mahesh
- IPLS Program, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Marimuthu Niraimathi
- IPLS Program, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Paramasamy Gunasekaran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
12
|
Farid AS, Horii Y. Modulation of paraoxonases during infectious diseases and its potential impact on atherosclerosis. Lipids Health Dis 2012; 11:92. [PMID: 22824324 PMCID: PMC3457911 DOI: 10.1186/1476-511x-11-92] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023] Open
Abstract
The paraoxonase (PON) gene family includes three members, PON1, PON2 and PON3, aligned in tandem on chromosome 7 in humans and on chromosome 6 in mice. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. The major goal of this review is to highlight the modulation of each of the PONs by infective (bacterial, viral and parasitic) agents, which may shed a light on the interaction between infectious diseases and PONs activities in order to effectively reduce the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Ayman Samir Farid
- Laboratory of Parasitic Diseases, Faculty of Agriculture, University of Miyazaki, Gakuen-Kibanadai, Nishi 1-1, Miyazaki 889-2192, Japan
| | | |
Collapse
|
13
|
Kim JB, Xia YR, Romanoski CE, Lee S, Meng Y, Shi YS, Bourquard N, Gong KW, Port Z, Grijalva V, Reddy ST, Berliner JA, Lusis AJ, Shih DM. Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule. Arterioscler Thromb Vasc Biol 2012; 31:2624-33. [PMID: 21836061 DOI: 10.1161/atvbaha.111.232827] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Chronic infection has long been postulated as a stimulus for atherogenesis. Pseudomonas aeruginosa infection has been associated with increased atherosclerosis in rats, and these bacteria produce a quorum-sensing molecule 3-oxo-dodecynoyl-homoserine lactone (3OC12-HSL) that is critical for colonization and virulence. Paraoxonase 2 (PON2) hydrolyzes 3OC12-HSL and also protects against the effects of oxidized phospholipids thought to contribute to atherosclerosis. We now report the response of human aortic endothelial cells (HAECs) to 3OC12-HSL and oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) in relation to PON2 expression. METHODS AND RESULTS Using expression profiling and network modeling, we identified the unfolded protein response (UPR), cell cycle genes, and the mitogen-activated protein kinase signaling pathway to be heavily involved in the HAEC response to 3OC12-HSL. The network also showed striking similarities to a network created based on HAEC response to Ox-PAPC, a major component of minimally modified low-density lipoprotein. HAECs in which PON2 was silenced by small interfering RNA showed increased proinflammatory response and UPR when treated with 3OC12-HSL or Ox-PAPC. CONCLUSION 3OC12-HSL and Ox-PAPC influence similar inflammatory and UPR pathways. Quorum sensing molecules, such as 3OC12-HSL, contribute to the proatherogenic effects of chronic infection. The antiatherogenic effects of PON2 include destruction of quorum sensing molecules.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Portugal LR, Fernandes LR, Alvarez-Leite JI. Host cholesterol and inflammation as common key regulators of toxoplasmosis and artherosclerosis development. Expert Rev Anti Infect Ther 2009; 7:807-19. [PMID: 19735223 DOI: 10.1586/eri.09.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atherosclerosis and toxoplasmosis are two widely prevalent diseases worldwide. The relationship between these diseases is now being elucidated. Atherosclerosis is a disease with three main components: increased blood lipoprotein/cholesterol and their deposition in the arterial wall, an important Th1-mediated proinflammatory reaction and thrombogenic status. Toxoplasma gondii, in turn, is dependent on host cholesterol for optimal intracellular growth and replication. As a result, host cholesterol will be cleared from the blood, reducing plasma low-density lipoprotein, a crucial atherosclerosis risk factor. On the other hand, T. gondii infection elicits an important Th1 systemic inflammatory response in the host. Therefore, this additional proinflammatory stimulus may impose an enhanced pro-atherogenic environment in the host. As result, the association between these two diseases in one individual could change the course of atherosclerosis. In this review, we demonstrate that the host-parasite relationship is complex and that the outcome of each disease is dependent on the availability of intracellular cholesterol, as well as the intensity of the inflammatory reaction triggered by the parasite. We also discuss the possible clinical implications of these studies.
Collapse
|
15
|
Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 2008; 42:389-412. [PMID: 18782827 DOI: 10.1258/la.2007.06014e] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) is caused by a defect in the transmembrane conductance regulator (CFTR) protein that functions as a chloride channel. Dysfunction of the CFTR protein results in salty sweat, pancreatic insufficiency, intestinal obstruction, male infertility and severe pulmonary disease. In most patients with CF life expectancy is limited due to a progressive loss of functional lung tissue. Early in life a persistent neutrophylic inflammation can be demonstrated in the airways. The cause of this inflammation, the role of CFTR and the cause of lung morbidity by different CF-specific bacteria, mostly Pseudomonas aeruginosa, are not well understood. The lack of an appropriate animal model with multi-organ pathology having the characteristics of the human form of CF has hampered our understanding of the pathobiology and chronic lung infections of the disease for many years. This review summarizes the main characteristics of CF and focuses on several available animal models that have been frequently used in CF research. A better understanding of the chronic lung infection caused particularly by P. aeruginosa, the pathophysiology of lung inflammation and the pathogenesis of lung disease necessitates animal models to understand CF, and to develop and improve treatment.
Collapse
Affiliation(s)
- I Kukavica-Ibrulj
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Pavillon Charles-Eugène Marchand, Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1K 7P4, Canada
| | | |
Collapse
|
16
|
Ozbudak O, Ogus C, Saba R, Turkay C, Sahin N, Ozbilim G, Kiliçarslan B. The effects of recurrent Pseudomonas aeruginosa infection on pulmonary parenchyma and vasculature in rats fed on a cholesterol-rich diet. Exp Lung Res 2006; 32:275-85. [PMID: 17060172 DOI: 10.1080/01902140600880240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It has been demonstrated that both hypercholesterolemia and infectious agents are contributing factors in atherosclerosis but their combined effect on the pulmonary vascular bed is not known. To answer this question, the authors tried to demonstrate the effects of recurrent infection on pulmonary parenchyma and vascular system in cholesterol-fed rats. Sixty-six rats were randomly divided into 4 groups: Groups I (control), II (cholesterol-rich diet), III (recurrent pulmonary Pseudomonas aeruginosa infection), IV (cholesterol-rich diet + recurrent infection). After 6 months serum cholesterol levels didn't increase in any of the groups. Central pulmonary artery wall thickness was increased in group IV (P < .0001). Although not significant, peripheral pulmonary artery wall thickness was increased in group IV. In rats fed on a cholesterol-rich diet, recurrent infection caused a significant increase in atherosclerosis, although serum cholesterol levels didn't increase. Infection and cholesterol-rich diet have a synergistic effect on atherosclerosis in the pulmonary vascular system in rats even in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Omer Ozbudak
- Department of Respiratory Diseases, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
UNLABELLED Although clinical manifestations of atherosclerotic coronary heart disease occur in adult life, the initial stages of its development commence in childhood. Therefore, elucidating the pathogenesis of early atherosclerosis and identifying the network of risk factors have become fundamental priorities for both cardiovascular healthcare providers and scientists. There is mounting evidence from both human studies and animal experiments that infectious pathogens could be implicated in atherosclerosis development. The vulnerability of the arterial wall to the adverse effects of infection is probably augmented when additional risk factors and/or certain proatherogenic genetic profiles are also present. The precise mechanisms whereby infection, alone or in synergy with conventional cardiovascular risk factors, could contribute to atherosclerosis are not fully understood. CONCLUSION Injury to the vascular endothelium, which could be elicited by infection through inflammatory, metabolic, autoimmune, and pathogen-related mechanisms, might be a central link between infection and early atherosclerosis.
Collapse
Affiliation(s)
- Petru Liuba
- Division of Paediatric Cardiology, Children's Hospital, University Hospital Lund, Lund, Sweden.
| | | |
Collapse
|
18
|
Turkay C, Saba R, Sahin N, Altunbas H, Ozbudak Ö, Akkaya B, Özbilim G, Cölbasi I, Turkay M, Ögünç D, Bayezid Ö. Effect of chronic Pseudomonas aeruginosa infection on the development of atherosclerosis in a rat model. Clin Microbiol Infect 2004. [DOI: 10.1111/j.1469-0691.2004.01048.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|