1
|
Nagwani AK, Melosik I, Kaczmarek Ł, Kmita H. Recovery from anhydrobiosis in the tardigrade Paramacrobiotus experimentalis: Better to be young than old and in a group than alone. Heliyon 2024; 10:e26807. [PMID: 38434295 PMCID: PMC10907786 DOI: 10.1016/j.heliyon.2024.e26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Desiccation-tolerant organisms can survive dehydration in a state of anhydrobiosis. Tardigrades can recover from anhydrobiosis at any life stage and are considered among the toughest animals on Earth. However, the factors that influence recovery from anhydrobiosis are not well understood. The study aimed to evaluate the effect of sex, age, the presence of other individuals and the combination of the number and duration of anhydrobiosis episodes on the recovery of Paramacrobiotus experimentalis. The activity of 1200 individuals for up to 48 h after rehydration was evaluated using analysis of variance (ANOVA). Age was the main factor influencing return to activity, followed by the combination of number and duration of anhydrobiosis episodes, influence of the presence of other individuals, and sex. More individuals returned to activity after repeated short than repeated long anhydrobiosis episodes and older individuals were less likely to recover than younger individuals. In addition, when compared to single animals, the presence of other individuals resulted in higher number of active animals after dehydration and rehydration. The effect of sex was significant, but there was no general tendency for one sex to recover from anhydrobiosis better than the other one. The results contribute to a better understanding of the anhydrobiosis ability of Paramacrobiotus experimentalis and provide background for full explanation of molecular, cellular and environmental mechanisms of anhydrobiosis.
Collapse
Affiliation(s)
- Amit Kumar Nagwani
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Iwona Melosik
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
2
|
Hvidepil LKB, Møbjerg N. New insights into osmobiosis and chemobiosis in tardigrades. Front Physiol 2023; 14:1274522. [PMID: 37929212 PMCID: PMC10620314 DOI: 10.3389/fphys.2023.1274522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Tardigrades are renowned for their ability to enter the extremotolerant state of latent life known as cryptobiosis. While it is widely accepted that cryptobiosis can be induced by freezing (cryobiosis) and by desiccation (anhydrobiosis), the latter involving formation of a so-called tun, the exact mechanisms underlying the state-as well as the significance of other cryptobiosis inducing factors-remain ambiguous. Here, we focus on osmotic and chemical stress tolerance in the marine tidal tardigrade Echiniscoides sigismundi. We show that E. sigismundi enters the tun state following exposure to saturated seawater and upon exposure to locality seawater containing the mitochondrial uncoupler DNP. The latter experiments provide evidence of osmobiosis and chemobiosis, i.e., cryptobiosis induced by high levels of osmolytes and toxicants, respectively. A small decrease in survival was observed following simultaneous exposure to DNP and saturated seawater indicating that the tardigrades may not be entirely ametabolic while in the osmobiotic tun. The tardigrades easily handle exposure to ultrapure water, but hypo-osmotic shock impairs tun formation and when exposed to ultrapure water the tardigrades do not tolerate DNP, indicating that tolerance towards dilute solutions involves energy-consuming processes. We discuss our data in relation to earlier and more contemporary studies on cryptobiosis and we argue that osmobiosis should be defined as a state of cryptobiosis induced by high external osmotic pressure. Our investigation supports the hypothesis that the mechanisms underlying osmobiosis and anhydrobiosis are overlapping and that osmobiosis likely represents the evolutionary forerunner of cryptobiosis forms that involve body water deprivation.
Collapse
Affiliation(s)
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hagelbäck P, Jönsson KI. An experimental study on tolerance to hypoxia in tardigrades. Front Physiol 2023; 14:1249773. [PMID: 37731547 PMCID: PMC10507709 DOI: 10.3389/fphys.2023.1249773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Tardigrades are small aquatic invertebrates with well documented tolerance to several environmental stresses, including desiccation, low temperature, and radiation, and an ability to survive long periods in a cryptobiotic state under arrested metabolism. Many tardigrade populations live in habitats where temporary exposure to hypoxia is expected, e.g., benthic layers or substrates that regularly undergo desiccation, but tolerance to hypoxia has so far not been thoroughly investigated in tardigrades. Method: We studied the response to exposure for hypoxia (<1 ppm) during 1-24 h in two tardigrade species, Richtersius cf. coronifer and Hypsibius exemplaris. The animals were exposed to hypoxia in their hydrated active state. Results: Survival was high in both species after the shortest exposures to hypoxia but tended to decline with longer exposures, with almost complete failure to recover after 24 h in hypoxia. R. cf. coronifer tended to be more tolerant than H. exemplaris. When oxygen level was gradually reduced from 8 to 1 ppm, behavioral responses in terms of irregular body movements were first observed at 3-4 ppm. Discussion: The study shows that both limno-terrestrial and freshwater tardigrades are able to recover after exposure to severe hypoxia, but only exposure for relatively short periods of time. It also indicates that tardigrade species have different sensitivity and response patterns to exposure to hypoxia. These results will hopefully encourage more studies on how tardigrades are affected by and respond to hypoxic conditions.
Collapse
Affiliation(s)
| | - K. Ingemar Jönsson
- Department of Environmental Science, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
4
|
Sieger J, Brümmer F, Ahn H, Lee G, Kim S, Schill RO. Reduced ageing in the frozen state in the tardigrade
Milnesium inceptum
(Eutardigrada: Apochela). J Zool (1987) 2022. [DOI: 10.1111/jzo.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Sieger
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - F. Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| | - H. Ahn
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - G. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - S. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - R. O. Schill
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Stuttgart Germany
| |
Collapse
|
5
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
6
|
Møbjerg A, Kodama M, Ramos-Madrigal J, Neves RC, Jørgensen A, Schiøtt M, Gilbert MTP, Møbjerg N. Extreme freeze-tolerance in cryophilic tardigrades relies on controlled ice formation but does not involve significant change in transcription. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111245. [PMID: 35640792 DOI: 10.1016/j.cbpa.2022.111245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Subzero temperatures are among the most significant factors defining the distribution of organisms, yet, certain taxa have evolved to overcome this barrier. The microscopic tardigrades are among the most freeze-tolerant animals, with selected species reported to survive milli-Kelvin temperatures. Here, we estimate survival of fully hydrated eutardigrades of the species Ramazzottius varieornatus following exposures to -20 °C and -80 °C as well as -196 °C with or without initial cooling to -80 °C. The tardigrades easily survive these temperatures, yet with a significant decrease in viability following rapid cooling by direct exposure to -196 °C. Hence, post-freeze recovery of R. varieornatus seems to rely on cooling rate and thus controlled ice formation. Cryophilic organisms are renowned for having cold-active enzymes that secure appropriate reaction rates at low temperatures. Hence, extreme freeze-tolerance in R. varieornatus could potentially involve syntheses of cryoprotectants and de novo transcription. We therefore generated a reference transcriptome for this cryophilic R. varieornatus population and explored for differential gene expression patterns following cooling to -80 °C as compared to active 5 °C controls. Specifically, we tested for fast transcription potentially occurring within 25 min of cooling from room temperature to a supercooling point of ca. -20 °C, at which the tardigrades presumably freeze and enter into the ametabolic state of cryobiosis. Our analyses revealed no evidence for differential gene expression. We, therefore, conclude that extreme freeze-tolerance in R. varieornatus relies on controlled extracellular freezing with any freeze-tolerance related genes being constitutively expressed.
Collapse
Affiliation(s)
- Ask Møbjerg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark. https://twitter.com/askmobjerg
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Aslak Jørgensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Poprawa I, Bartylak T, Kulpla A, Erdmann W, Roszkowska M, Chajec Ł, Kaczmarek Ł, Karachitos A, Kmita H. Verification of Hypsibius exemplaris Gąsiorek et al., 2018 (Eutardigrada; Hypsibiidae) application in anhydrobiosis research. PLoS One 2022; 17:e0261485. [PMID: 35303010 PMCID: PMC8932574 DOI: 10.1371/journal.pone.0261485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Anhydrobiosis is considered to be an adaptation of important applicative implications because it enables resistance to the lack of water. The phenomenon is still not well understood at molecular level. Thus, a good model invertebrate species for the research is required. The best known anhydrobiotic invertebrates are tardigrades (Tardigrada), considered to be toughest animals in the world. Hypsibius. exemplaris is one of the best studied tardigrade species, with its name "exemplaris" referring to the widespread use of the species as a laboratory model for various types of research. However, available data suggest that anhydrobiotic capability of the species may be overestimated. Therefore, we determined anhydrobiosis survival by Hys. exemplaris specimens using three different anhydrobiosis protocols. We also checked ultrastructure of storage cells within formed dormant structures (tuns) that has not been studied yet for Hys. exemplaris. These cells are known to support energetic requirements of anhydrobiosis. The obtained results indicate that Hys. exemplaris appears not to be a good model species for anhydrobiosis research.
Collapse
Affiliation(s)
- Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Tomasz Bartylak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Adam Kulpla
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| |
Collapse
|
8
|
Giovannini I, Boothby TC, Cesari M, Goldstein B, Guidetti R, Rebecchi L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci Rep 2022; 12:1938. [PMID: 35121798 PMCID: PMC8816950 DOI: 10.1038/s41598-022-05734-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Water unavailability is an abiotic stress causing unfavourable conditions for life. Nevertheless, some animals evolved anhydrobiosis, a strategy allowing for the reversible organism dehydration and suspension of metabolism as a direct response to habitat desiccation. Anhydrobiotic animals undergo biochemical changes synthesizing bioprotectants to help combat desiccation stresses. One stress is the generation of reactive oxygen species (ROS). In this study, the eutardigrade Paramacrobiotus spatialis was used to investigate the occurrence of ROS associated with the desiccation process. We observed that the production of ROS significantly increases as a function of time spent in anhydrobiosis and represents a direct demonstration of oxidative stress in tardigrades. The degree of involvement of bioprotectants, including those combating ROS, in the P. spatialis was evaluated by perturbing their gene functions using RNA interference and assessing the successful recovery of animals after desiccation/rehydration. Targeting the glutathione peroxidase gene compromised survival during drying and rehydration, providing evidence for the role of the gene in desiccation tolerance. Targeting genes encoding glutathione reductase and catalase indicated that these molecules play roles during rehydration. Our study also confirms the involvement of aquaporins 3 and 10 during rehydration. Therefore, desiccation tolerance depends on the synergistic action of many different molecules working together.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy.
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| |
Collapse
|
9
|
Wojciechowska D, Roszkowska M, Kaczmarek Ł, Jarmuszkiewicz W, Karachitos A, Kmita H. The tardigrade Hypsibius exemplaris has the active mitochondrial alternative oxidase that could be studied at animal organismal level. PLoS One 2021; 16:e0244260. [PMID: 34424897 PMCID: PMC8382173 DOI: 10.1371/journal.pone.0244260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial alternative oxidase (AOX) is predicted to be present in mitochondria of several invertebrate taxa including tardigrades. Independently of the reason concerning the enzyme occurrence in animal mitochondria, expression of AOX in human mitochondria is regarded as a potential therapeutic strategy. Till now, relevant data were obtained due to heterologous AOX expression in cells and animals without natively expressed AOX. Application of animals natively expressing AOX could importantly contribute to the research. Thus, we decided to investigate AOX activity in intact specimens of the tardigrade Hypsibius exemplaris. We observed that H. exemplaris specimens’ tolerance to the blockage of the mitochondrial respiratory chain (MRC) cytochrome pathway was diminished in the presence of AOX inhibitor and the inhibitor-sensitive respiration enabled the tardigrade respiration under condition of the blockage. Importantly, these observations correlated with relevant changes of the mitochondrial inner membrane potential (Δψ) detected in intact animals. Moreover, detection of AOX at protein level required the MRC cytochrome pathway blockage. Overall, we demonstrated that AOX activity in tardigrades can be monitored by the animals’ behavior observation as well as by measurement of intact specimens’ whole-body respiration and Δψ. Furthermore, it is also possible to check the impact of the MRC cytochrome pathway blockage on AOX level as well as AOX inhibition in the absence of the blockage on animal functioning. Thus, H. exemplaris could be consider as a whole-animal model suitable to study AOX.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Faculty of Physics, Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Milena Roszkowska
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Wiesława Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Andonis Karachitos
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Hanna Kmita
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
- * E-mail:
| |
Collapse
|
10
|
Pedersen BH, Malte H, Finster K, Ramløv H. Respiration Measurements of Individual Tardigrades of the Species Richtersius cf coronifer as a Function of Temperature and Salinity and Termination of Anhydrobiosis. ASTROBIOLOGY 2021; 21:853-865. [PMID: 33926198 DOI: 10.1089/ast.2020.2371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous studies have demonstrated that tardigrades in a resting state (tun state) are very resistant to exceptional stress levels in comparison with the resistance observed in multicellular organisms in general. The types of stress include desiccation and radiation, which are also relevant in astrobiological research, and therefore, tardigrades are used as multicellular model organisms. For example, tardigrades have been investigated in the TARSE, TARDIS, RoTaRad, and TARDIKISS projects; their survival has been evaluated according to stressful conditions that prevail in low earth orbit, including the effects of cosmic radiation and microgravity. Despite this interest, the study of tardigrade biology has been severely hampered by the sparsity of appropriate quantitative techniques that inform at the single-organism level. In this study, we present results on mass-specific respiration rates as a function of termination of anhydrobiosis and variations in temperature and salinity, including Mars-analog perchlorate solutions, by using microsensor technology to measure respiration. Based on our results for Richtersius cf coronifer, we estimated the activation energy (50.8 kJ/mole O2) for its metabolism as well as Q10 for selected temperature intervals. Q10 was constant-∼1.5-between 2°C and 33°C, except for the interval 11-16°C, where Q10 was 5.5. The steady-state mass-specific respiration rate of individuals of Richtersius cf coronifer increased with increasing salinity below the lethal limit, likely representing the energy requirements of its osmoregulatory response. We report the first quantitative data of a tardigrade's metabolic dynamics during the termination of anhydrobiosis, revealing significant variation between individuals. However, we observed a general trend, that is, a high initial metabolic rate after exposure to water. Our approach would allow us to carry out quantitative physiological studies of tardigrades on board of the International Space Station, and thus significantly extend the possibility of studying the response of multicellular organisms in space. Summary statement This article reports on first measurements of mass-specific respiration rates of individual tardigrades of the species Richtersius cf coronifer during termination of anhydrobiosis as well as measurements of the impact of temperature and salinity on oxygen uptake rates.
Collapse
Affiliation(s)
- Bjarke H Pedersen
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology: Microbiology Section, Aarhus University, Aarhus C, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hans Malte
- Department of Biology: Zoophysiology Section, Aarhus University, Aarhus C, Denmark
| | - Kai Finster
- Department of Biology: Microbiology Section, Aarhus University, Aarhus C, Denmark
| | - Hans Ramløv
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
11
|
Shimada Y, Hasegawa Y, Harada Y, Nakamura R, Matsuoka T, Arikawa M. Signaling in temperature-induced resting cyst formation in the ciliated protozoan Colpoda cucullus. Eur J Protistol 2021; 79:125800. [PMID: 34049128 DOI: 10.1016/j.ejop.2021.125800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
The terrestrial ciliated protozoan Colpoda cucullus inhabits soil. When the habitat conditions become unfavorable, the vegetative cells of C. cucullus quickly transform into resting cysts. C. cucullus culture is established in our laboratory, and encystment is routinely induced by the addition of Ca2+ to overpopulated vegetative cells. However, an increase in Ca2+ concentration and overpopulation of vegetative cells do not always occur in natural. We investigated the effect of temperature and found that cyst formation was induced by a rapid increase of 5 °C within 2 min but not by a decrease. Moreover, an increase in intracellular Ca2+ concentrations is essential, but Ca2+ inflow does not necessarily occur during encystment. Ca2+ image analysis showed that Ca2+ is stored in vesicular structures and released into the cytoplasm within 60 s after temperature stimulation. Multiple signaling pathways are activated after the release of Ca2+ from vesicles, and cAMP is a candidate second messenger with a crucial role in the process of temperature-induced encystment. Further studies are needed to clarify the mechanism underlying the sensing of temperature and release of Ca2+ from vesicles.
Collapse
Affiliation(s)
- Yuto Shimada
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Yuya Hasegawa
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Yuya Harada
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Rikiya Nakamura
- Graduate School of Integrated Arts and Sciences, Applied Science Program, Kochi University, Kochi, Japan
| | - Tatsuomi Matsuoka
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Kochi, Japan.
| |
Collapse
|
12
|
Wojciechowska D, Karachitos A, Roszkowska M, Rzeźniczak W, Sobkowiak R, Kaczmarek Ł, Kosicki JZ, Kmita H. Mitochondrial alternative oxidase contributes to successful tardigrade anhydrobiosis. Front Zool 2021; 18:15. [PMID: 33794934 PMCID: PMC8015188 DOI: 10.1186/s12983-021-00400-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Anhydrobiosis can be described as an adaptation to lack of water that enables some organisms, including tardigrades, to survive extreme conditions, even some that do not exist on Earth. The cellular mechanisms underlying anhydrobiosis are still not completely explained including the putative contribution of mitochondrial proteins. Since mitochondrial alternative oxidase (AOX), described as a drought response element in plants, was recently proposed for various invertebrates including tardigrades, we investigated whether AOX is involved in successful anhydrobiosis of tardigrades. Milnesium inceptum was used as a model for the study. We confirmed functionality of M. inceptum AOX and estimated its contribution to the tardigrade revival after anhydrobiosis of different durations. We observed that AOX activity was particularly important for M. inceptum revival after the long-term tun stage but did not affect the rehydration stage specifically. The results may contribute to our understanding and then application of anhydrobiosis underlying mechanisms.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Wiktor Rzeźniczak
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Sobkowiak
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
13
|
Pedersen BH, Malte H, Ramløv H, Finster K. A method for studying the metabolic activity of individual tardigrades by measuring oxygen uptake using microrespirometry. J Exp Biol 2020; 223:jeb233072. [PMID: 33077639 DOI: 10.1242/jeb.233072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/11/2020] [Indexed: 11/20/2022]
Abstract
Studies of tardigrade biology have been severely limited by the sparsity of appropriate quantitative techniques, informative on a single-organism level. Therefore, many studies rely on motility-based survival scoring and quantifying reproductive success. Measurements of O2 respiration rates, as an integrating expression of the metabolic activity of single tardigrades, would provide a more comprehensive insight into how an individual tardigrade is responding to specific environmental factors or changes in life stages. Here, we present and validate a new method for determining the O2 respiration rate (nmol O2 mg-1 h-1) of single tardigrades under steady state, using O2 microsensors. As an example, we show that the O2 respiration rate determined in MilliQ water for individuals of Richtersius coronifer and of Macrobiotus macrocalix at 22°C was 10.8±1.84 and 13.1±2.19 nmol O2 mg-1 h-1, respectively.
Collapse
Affiliation(s)
- Bjarke H Pedersen
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, R426F, 2800 Kongens Lyngby, Denmark
| | - Hans Malte
- Department of Biology: Zoophysiology, Aarhus University, CF Møllers Allé 3, building 1131, R224, 8000 Aarhus C, Denmark
| | - Hans Ramløv
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 15.1, 4000 Roskilde, Denmark
| | - Kai Finster
- Department of Biology: Microbiology Section, Aarhus University, Ny Munkegade 116, building 1540, R129, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Honer M, Buscemi K, Barrett N, Riazati N, Orlando G, Nelson MD. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. J Neurogenet 2020; 34:440-452. [PMID: 33044108 DOI: 10.1080/01677063.2020.1830084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.
Collapse
Affiliation(s)
- Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Natalie Barrett
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Niknaz Riazati
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Gerald Orlando
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Abstract
Even though tardigrades have been known since 1772, their phylogenetic position is still controversial. Tardigrades are regarded as either the sister group of arthropods, onychophorans, or onychophorans plus arthropods. Furthermore, the knowledge about their gametogenesis, especially oogenesis, is still poor and needs further analysis. The process of oogenesis has been studied solely for several eutardigradan species. Moreover, the spatial organization of the female germ-line clusters has been described for three species only. Meroistic ovaries characterize all analyzed species. In species of the Parachela, one cell per germ-cell cluster differentiates into the oocyte, while the remaining cells become the trophocytes. In Apochela several cells in the cluster differentiate into oocytes. Vitellogenesis is of a mixed type. The eggs are covered with the egg capsule that is composed of two shells: the thin vitelline envelope that adheres to the oolemma and the thick three-layered chorion. Chorion is formed as a first followed by vitelline envelope. Several features related to the oogenesis and structure of the ovary confirm the hypothesis that tardigrades are the sister group rather for arthropods than for onychophorans.
Collapse
Affiliation(s)
- Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
16
|
The springtail Megaphorura arctica survives extremely high osmolality of body fluids during drought. J Comp Physiol B 2018; 188:939-945. [PMID: 30194462 DOI: 10.1007/s00360-018-1180-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023]
Abstract
The springtail Megaphorura arctica Tullberg 1876 is widespread in the arctic and subarctic regions where it can be abundant along beaches. This species survives winters using cryoprotective dehydration as a cold tolerance strategy during which it becomes drastically dehydrated. Several studies have investigated the physiological responses associated with water loss of M. arctica under exposure to freezing temperatures, but little is known of the dynamics of body water and hemolymph osmolality when subjected to gradually increasing drought stress at temperatures above the freezing point. Therefore, an experiment was conducted in which M. arctica was subjected to relative humidities (RH) decreasing from fully saturated conditions to ca. 89%RH over a period of 30 days. During the experiment water content of springtails decreased from about 3 to ca. 0.5 mg mg-1 dry weight. Alongside with water loss, trehalose concentrations increased from nearly nothing to 0.12 mg mg-1 dry weight, which contributed to an increase in hemolymph osmolality from ca. 250 mOsm to at least 7 Osm. All springtails survived water loss down to 0.7 mg mg-1 dry weight and hemolymph osmolality of ca. 4 Osm, and about 60% of the springtails survived with only 0.5 mg water mg-1 dry weight and osmolality of ca. 7 Osm. At this level of dehydration, Differential Scanning Calorimetry analysis showed that most, but not all, osmotically active water was lost. It is discussed that the extensive dehydration must be associated with high concentrations of salts potentially causing denaturation and precipitation of cellular proteins. M. arctica is remarkably tolerant of dehydration, but because it does not endure loss of the osmotically inactive water it cannot be categorized as a truly anhydrobiotic species.
Collapse
|
17
|
Czerneková M, Janelt K, Student S, Jönsson KI, Poprawa I. A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One 2018; 13:e0201430. [PMID: 30096140 PMCID: PMC6086413 DOI: 10.1371/journal.pone.0201430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023] Open
Abstract
Tardigrades represent an invertebrate phylum with no circulatory or respiratory system. Their body cavity is filled with free storage cells of the coelomocyte-type, which are responsible for important physiological functions. We report a study comparing the ultrastructure of storage cells in anhydrobiotic and hydrated specimens of the eutardigrade Richtersius coronifer. We also analysed the effect of temperature stress on storage cell structure. Firstly, we verified two types of ultrastructurally different storage cells, which differ in cellular organelle complexity, amount and content of reserve material and connection to oogenetic stage. Type I cells were found to differ ultrastructurally depending on the oogenetic stage of the animal. The main function of these cells is energy storage. Storage cells of Type I were also observed in the single male that was found among the analysed specimens. The second cell type, Type II, found only in females, represents young undifferentiated cells, possibly stem cells. The two types of cells also differ with respect to the presence of nucleolar vacuoles, which are related to oogenetic stages and to changes in nucleolic activity during oogenesis. Secondly, this study revealed that storage cells are not ultrastructurally affected by six months of desiccation or by heating following this desiccation period. However, heating of the desiccated animals (tuns) tended to reduce animal survival, indicating that long-term desiccation makes these animals more vulnerable to heat stress. We confirmed the degradative pathways during the rehydration process after desiccation and heat stress. Our study is the first to document two ultrastructurally different types of storage cells in tardigrades and reveals new perspectives for further studies of tardigrade storage cells.
Collapse
Affiliation(s)
- Michaela Czerneková
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland
| | - K. Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
18
|
Sørensen-Hygum TL, Stuart RM, Jørgensen A, Møbjerg N. Modelling extreme desiccation tolerance in a marine tardigrade. Sci Rep 2018; 8:11495. [PMID: 30065347 PMCID: PMC6068186 DOI: 10.1038/s41598-018-29824-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
It has recently been argued that the enigmatic tardigrades (water bears) will endure until the sun dies, surviving any astrophysical calamities in Earth's oceans. Yet, our knowledge of stress tolerance among marine tardigrade species is very limited and most investigations revolve around species living in moist habitats on land. Here, we investigate desiccation tolerance in the cosmopolitan marine tidal tardigrade, Echiniscoides sigismundi, providing the first thorough analysis on recovery upon desiccation from seawater. We test the influence on survival of desiccation surface, time spent desiccated (up to 1 year) and initial water volume. We propose analysis methods for survival estimates, which can be used as a future platform for evaluating and analysing recovery rates in organisms subjected to extreme stress. Our data reveal that marine tidal tardigrades tolerate extremely rapid and extended periods of desiccation from seawater supporting the argument that these animals are among the toughest organisms on Earth.
Collapse
Affiliation(s)
- Thomas L Sørensen-Hygum
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robyn M Stuart
- Data Science Laboratory, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Shiraga K, Adachi A, Nakamura M, Tajima T, Ajito K, Ogawa Y. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study. J Chem Phys 2018; 146:105102. [PMID: 28298096 DOI: 10.1063/1.4978232] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).
Collapse
Affiliation(s)
- Keiichiro Shiraga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aya Adachi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahito Nakamura
- NTT Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Takuro Tajima
- NTT Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Katsuhiro Ajito
- NTT Device Technology Labs, NTT Corporation, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Shukla N, Pomarico E, Hecht CJ, Taylor EA, Chergui M, Othon CM. Hydrophobic interactions of sucralose with protein structures. Arch Biochem Biophys 2018; 639:38-43. [DOI: 10.1016/j.abb.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
21
|
Vasanthan T, Alejaldre L, Hider J, Patel S, Husain N, Umapathisivam B, Stone J. G-Equivalent Acceleration Tolerance in the Eutardigrade Species Hypsibius dujardini. ASTROBIOLOGY 2017; 17:55-60. [PMID: 28051326 DOI: 10.1089/ast.2015.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described. We used the eutardigrade species Hypsibius dujardini to investigate short-term tolerance to g-equivalent accelerations (i.e., mimicking g-forces). Data obtained from specimens centrifuged between 3421g and 16,060g for 1 min inclusively reveal tolerance in an acceleration-dependent relation, with lower survivorship and egg production at higher accelerations. This is the first study to demonstrate tardigrade potential for tolerance to hypergravity and describe expected effects on tardigrade survival and reproduction. These findings will prove to be useful in lithopanspermia research (i.e., viable spread in meteoritic rocks). Key Words: Astrobiology-Extreme tolerance-Hypergravity-Tardigrade. Astrobiology 17, 55-60.
Collapse
Affiliation(s)
- Tarushika Vasanthan
- 1 Department of Biology, McMaster University , Hamilton, Canada
- 2 Origins Institute, McMaster University , Hamilton, Canada
| | - Lorea Alejaldre
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Jessica Hider
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Shreya Patel
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Nabiha Husain
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | | | - Jonathon Stone
- 1 Department of Biology, McMaster University , Hamilton, Canada
- 2 Origins Institute, McMaster University , Hamilton, Canada
| |
Collapse
|
22
|
Jönsson KI, Hygum TL, Andersen KN, Clausen LKB, Møbjerg N. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi. PLoS One 2016; 11:e0168884. [PMID: 27997621 PMCID: PMC5173286 DOI: 10.1371/journal.pone.0168884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022] Open
Abstract
Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.
Collapse
Affiliation(s)
- K. Ingemar Jönsson
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
- * E-mail: (KIJ); (NM)
| | - Thomas L. Hygum
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (KIJ); (NM)
| |
Collapse
|
23
|
Hygum TL, Clausen LKB, Halberg KA, Jørgensen A, Møbjerg N. Tun formation is not a prerequisite for desiccation tolerance in the marine tidal tardigradeEchiniscoides sigismundi. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas L. Hygum
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Lykke K. B. Clausen
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Kenneth A. Halberg
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
- Institute of Molecular, Cell and Systems Biology; College of Medical, Veterinary and Life Sciences, University of Glasgow; Davidson Building Room 324 Glasgow G12 8QQ UK
| | - Aslak Jørgensen
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| | - Nadja Møbjerg
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen Denmark
| |
Collapse
|
24
|
Ito M, Saigo T, Abe W, Kubo T, Kunieda T. Establishment of an isogenic strain of the desiccation-sensitive tardigradeIsohypsibius myrops(Parachela, Eutardigrada) and its life history traits. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Makiko Ito
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Tokiko Saigo
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Wataru Abe
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
- Department of Biology; Dokkyo Medical University; Tochigi Japan
| | - Takeo Kubo
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| | - Takekazu Kunieda
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
25
|
Czernekova M, Jönsson KI. Experimentally Induced Repeated Anhydrobiosis in the Eutardigrade Richtersius coronifer. PLoS One 2016; 11:e0164062. [PMID: 27828978 PMCID: PMC5102368 DOI: 10.1371/journal.pone.0164062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.
Collapse
Affiliation(s)
- Michaela Czernekova
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| | - K. Ingemar Jönsson
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
26
|
Tolstyka Z, Phillips H, Cortez M, Wu Y, Ingle N, Bell JB, Hackett PB, Reineke TM. Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomater Sci Eng 2016; 2:43-55. [PMID: 26807438 PMCID: PMC4710891 DOI: 10.1021/acsbiomaterials.5b00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
The development and thorough characterization of nonviral delivery agents for nucleic acid and genome editing therapies are of high interest to the field of nanomedicine. Indeed, this vehicle class offers the ability to tune chemical architecture/biological activity and readily package nucleic acids of various sizes and morphologies for a variety of applications. Herein, we present the synthesis and characterization of a class of trehalose-based block copolycations designed to stabilize polyplex formulations for lyophilization and in vivo administration. A 6-methacrylamido-6-deoxy trehalose (MAT) monomer was synthesized from trehalose and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization to yield pMAT43. The pMAT43 macro-chain transfer agent was then chain-extended with aminoethylmethacrylamide (AEMA) to yield three different pMAT-b-AEMA cationic-block copolymers, pMAT-b-AEMA-1 (21 AEMA repeats), -2 (44 AEMA repeats), and -3 (57 AEMA repeats). These polymers along with a series of controls were used to form polyplexes with plasmids encoding firefly luciferase behind a strong ubiquitous promoter. The trehalose-coated polyplexes were characterized in detail and found to be resistant to colloidal aggregation in culture media containing salt and serum. The trehalose-polyplexes also retained colloidal stability and promoted high gene expression following lyophilization and reconstitution. Cytotoxicity, cellular uptake, and transfection ability were assessed in vitro using both human glioblastoma (U87) and human liver carcinoma (HepG2) cell lines wherein pMAT-b-AEMA-2 was found to have the optimal combination of high gene expression and low toxicity. pMAT-b-AEMA-2 polyplexes were evaluated in mice via slow tail vein infusion. The vehicle displayed minimal toxicity and discouraged nonspecific internalization in the liver, kidney, spleen, and lungs as determined by quantitative polymerase chain reaction (qPCR) and fluorescence imaging experiments. Hydrodynamic infusion of the polyplexes, however, led to very specific localization of the polyplexes to the mouse liver and promoted excellent gene expression in vivo.
Collapse
Affiliation(s)
- Zachary
P. Tolstyka
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Haley Phillips
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mallory Cortez
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yaoying Wu
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nilesh Ingle
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jason B. Bell
- Department
of Genetics, Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Perry B. Hackett
- Department
of Genetics, Cell Biology and Development, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department
of Chemistry and Center for Genome Engineering, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Chen L, Shukla N, Cho I, Cohn E, Taylor EA, Othon CM. Sucralose Destabilization of Protein Structure. J Phys Chem Lett 2015; 6:1441-1446. [PMID: 26263149 DOI: 10.1021/acs.jpclett.5b00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein model. For sucralose solutions, however, the diffusion is dependent on the concentration, strongly diverging from the viscosity predictions, and results in heterogeneous rotational diffusion.
Collapse
Affiliation(s)
- Lee Chen
- †Department of Physics, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, United States
| | - Nimesh Shukla
- †Department of Physics, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, United States
| | - Inha Cho
- †Department of Physics, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, United States
| | - Erin Cohn
- ‡Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Erika A Taylor
- ‡Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Christina M Othon
- †Department of Physics, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, United States
| |
Collapse
|
28
|
Holmstrup M, Bayley M. Protaphorura tricampata, a euedaphic and highly permeable springtail that can sustain activity by osmoregulation during extreme drought. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1104-1110. [PMID: 24035747 DOI: 10.1016/j.jinsphys.2013.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
We have investigated drought physiology of soil dwelling springtails since water availability is a key environmental factor governing their performance, and predictions of climate change suggest increased frequency and intensity of summer droughts. Here we show in field and laboratory experiments that the typical euedaphic springtail, Protaphorura tricampata, can survive extreme drought and remain active in soils where the water potential is much lower than equivalent to normal osmotic pressure of springtails. Euedaphic springtails (i.e. species living in deeper soil layers) have an extraordinary ability to up-regulate osmotic pressure of body fluids and prevent water loss in soils where the water potential has dropped to well below the permanent wilting percentage of plants. The ability to regulate osmotic pressure of body fluids is based on accumulation of compatible osmolytes such as sugars and free amino acids. Alanine was the most important osmolyte in P. tricampata and accumulated to concentrations of about 300μmolg(-1) dry weight. It is suggested that alanine also serves as a non-toxic storage of ammonia during drought periods where the normal urine production is hampered. The results presented here show, contrary to convention, that high cuticular permeability is not necessarily accompanied by poor drought tolerance, and is not a good predictor of drought susceptibility.
Collapse
Affiliation(s)
- Martin Holmstrup
- Aarhus University, Department of Bioscience, Vejlsøvej 25, PO Box 314, 8600 Silkeborg, Denmark.
| | | |
Collapse
|
29
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Czechowski P, Sands CJ, Adams BJ, D'Haese CA, Gibson JAE, McInnes SJ, Stevens MI. Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. INVERTEBR SYST 2012. [DOI: 10.1071/is12034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent studies have suggested that some resident Antarctic biota are of ancient origin and may have been isolated for millions of years. The phylum Tardigrada, which is part of the Antarctic terrestrial meiofauna, is of particular interest due to an impressive array of biochemical abilities to withstand harsh environmental conditions. Tardigrades are one of the few widespread Antarctic terrestrial animals that have the potential to be used as a model for evolution and biogeography on the Antarctic continent. We isolated 126 individual tardigrades from four geographically isolated soil samples from two remote nunataks in the Sør Rondane Mountains, Dronning Maud Land, Antarctica. We examined genetic variation among individuals utilising three gene regions: cytochrome c oxidase subunit I gene (COI), 18S rDNA (18S), and the wingless (Wg) gene. Comparison of sequences from worldwide and Antarctic tardigrades indicated long-term survival and isolation over glacially dominated periods in ice-free habitats in the Sør Rondane Mountains.
Collapse
|
31
|
Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM. Survival in extreme environments - on the current knowledge of adaptations in tardigrades. Acta Physiol (Oxf) 2011; 202:409-20. [PMID: 21251237 DOI: 10.1111/j.1748-1716.2011.02252.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.
Collapse
Affiliation(s)
- N Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cornette R, Kikawada T. The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. IUBMB Life 2011; 63:419-29. [PMID: 21547992 DOI: 10.1002/iub.463] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/09/2011] [Indexed: 01/09/2023]
Abstract
An African chironomid, Polypedilum vanderplanki, is the only insect known to be capable of extreme desiccation tolerance, or anhydrobiosis. In the 1950s and 1960s, Hinton strenuously studied anhydrobiosis in this insect from a physiological standpoint; however, nobody has afterward investigated the phenomenon. In 2000, research on mechanisms underlying anhydrobiosis was resumed due to successful establishment of a rearing system for P. vanderplanki. This review is focused on the latest findings on the physiological and molecular mechanisms underlying the induction of anhydrobiosis in P. vanderplanki. Early experiments demonstrated that the induction of anhydrobiosis was possible in isolated tissues and independent from the control of central nervous system. However, to achieve successful anhydrobiosis, larvae need a slow regime of desiccation, allowing them to synthesize molecules, which will protect cells and tissues against the deleterious effects of dehydration. Trehalose, a nonreducing disaccharide, which accumulates in P. vanderplanki larvae up to 20% of the dry body mass, is thought to replace the water in its tissues. Similarly, highly hydrophilic proteins called the late embryogenesis abundant (LEA) proteins are expressed in huge quantities and act as a molecular shield to protect biological molecules against aggregation and denaturation. This function is shared by heat shock proteins, which are also upregulated during the desiccation process. At the same time, desiccating larvae express various antioxidant molecules and enzymes, to cope with the massive oxidative stress, which is responsible for general damage to membranes, proteins, and DNA in dehydrating cells. Finally, specific water channels, called aquaporins, accelerate dehydration, and trehalose together with LEA proteins forms a glassy matrix, which protects the biological molecules and the structural integrity of larvae in the anhydrobiotic state.
Collapse
Affiliation(s)
- Richard Cornette
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | | |
Collapse
|
33
|
Wełnicz W, Grohme MA, Kaczmarek L, Schill RO, Frohme M. Anhydrobiosis in tardigrades--the last decade. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:577-583. [PMID: 21440551 DOI: 10.1016/j.jinsphys.2011.03.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
The current state of knowledge about anhydrobiosis in tardigrades is presented. In response to adverse environmental conditions tardigrades arrest their metabolic activity and after complete dehydration enter the so-called "tun" state. In this ametabolic state they are able to tolerate exposure to various chemical and physical extremes. These micrometazoans have evolved various kinds of morphological, physiological and molecular adaptations to reduce the effects of desiccation. In this review we address behavioral adaptation, morphological features and molecules which determine the anhydrobiotic survival. The influence of the time spent in anhydrobiotic state on the lifespan and DNA and the role of the antioxidant defense system are also considered. Finally we summarize recent input from the "omics" sciences.
Collapse
Affiliation(s)
- Weronika Wełnicz
- Molecular Biology and Functional Genome Analysis, University of Applied Sciences Wildau, Germany.
| | | | | | | | | |
Collapse
|
34
|
Guidetti R, Altiero T, Rebecchi L. On dormancy strategies in tardigrades. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:567-76. [PMID: 21402076 DOI: 10.1016/j.jinsphys.2011.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 05/19/2023]
Abstract
In this review we analyze the dormancy strategies of metazoans inhabiting "hostile to life" habitats, which have a strong impact on their ecology and in particular on the traits of their life history. Tardigrades are here considered a model animal, being aquatic organisms colonizing terrestrial habitats. Tardigrades evolved a large variety of dormant stages that can be ascribed to diapause (encystment, cyclomorphosis, resting eggs) and cryptobiosis (anhydrobiosis, cryobiosis, anoxibiosis). In tardigrades, diapause and cryptobiosis can occur separately or simultaneously, consequently the adoption of one adaptive strategy is not necessarily an alternative to the adoption of the other. Encystment and cyclomorphosis are characterized by seasonal cyclic changes in morphology and physiology of the animals. They share several common features and their evolution is strictly linked to the molting process. A bet-hedging strategy with different patterns of egg hatching time has been observed in a tardigrade species. Four categories of eggs have been identified: subitaneous, delayed-hatching, abortive and diapause resting eggs, which needs a stimulus to hatch (rehydration after a period of desiccation). Cryptobiotic tardigrades are able to withstand desiccation (anhydrobiosis) and freezing (cryobiosis) at any stage of their life-cycle. This ability involves a complex array of factors working at molecular (bioprotectans), physiological and structural levels. Animal survival and the accumulation of molecular damage are related to the time spent in the cryptobiotic state, to the abiotic parameters during the cryptobiotic state, and to the conditions during initial and final phases of the process. Cryptobiosis evolved independently at least two times in tardigrades, in eutardigrades and in echiniscoids. Within each evolutionary line, the absence of cryptobiotic abilities is more related to selective pressures to local habitat adaptation than to phylogenetic relationships. The selective advantages of cryptobiosis (e.g. persistency in "hostile to life" habitats, reduction of competitors, parasites and predators, escaping in time from stressful conditions) could explain the high tardigrade species diversity and number of specimens found in habitats that dry out compared to freshwater habitats.
Collapse
Affiliation(s)
- Roberto Guidetti
- Department of Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy.
| | | | | |
Collapse
|
35
|
Nielsen UN, Wall DH, Adams BJ, Virginia RA. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol 2011. [DOI: 10.1007/s00300-011-1021-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Lemloh M, Brümmer F, Schill RO. Life‐history traits of the bisexual tardigrades
Paramacrobiotus tonollii
and
Macrobiotus sapiens. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00599.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marie‐louise Lemloh
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Franz Brümmer
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Ralph O. Schill
- Biological Institute, Zoology, Universität Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| |
Collapse
|
37
|
Persson D, Halberg KA, Jørgensen A, Ricci C, Møbjerg N, Kristensen RM. Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2010.00605.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dennis Persson
- Invertebrate Department, Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Kenneth A. Halberg
- Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Aslak Jørgensen
- Laboratory of Molecular Systematics, University of Copenhagen, Sølvgade, Copenhagen, Denmark
| | | | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Reinhardt M. Kristensen
- Invertebrate Department, Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| |
Collapse
|
38
|
Guidetti R, Altiero T, Bertolani R, Grazioso P, Rebecchi L. Survival of freezing by hydrated tardigrades inhabiting terrestrial and freshwater habitats. ZOOLOGY 2011; 114:123-8. [PMID: 21429723 DOI: 10.1016/j.zool.2010.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/07/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The seasonality and unpredictability of environmental conditions at high altitudes and latitudes govern the life cycle patterns of organisms, giving rise to stresses that cause death or development of specific adaptations. Ice formation is a major variable affecting the survival of both freshwater fauna and fauna inhabiting lichens, mosses and leaf litter. Tardigrades occupy a wide range of niches in marine, freshwater and terrestrial environments. The highest number of species is found in terrestrial habitats thanks to their ability to enter anhydrobiosis and cryobiosis. The cryobiotic ability of tardigrade species from polar regions is well known. Consequently, we focused our research on the ability to survive freezing in the active hydrated state using seven tardigrade species differing in phylogenetic position and collected at various altitudes and from different habitats in a temperate area. Specimens were cooled at different cooling rates (from 0.31° C min(-1) to 3.26° C min(-1)). Even though the final survival and the time required by animals to recover to active life were both inversely related to the cooling rate, highly significant interspecific differences were found. Species survival ability ranged from excellent to none. Species living in xeric habitats withstood freezing better than those living in hygrophilous habitats, while true limnic species did not exhibit any cryobiotic ability. The ability to withstand freezing seems linked to the anhydrobiotic ability. The differences in cryptobiotic performance among tardigrade species seem more influenced by selective pressures linked to local adaptation to habitat characteristics than by phylogenetic relationships.
Collapse
Affiliation(s)
- Roberto Guidetti
- Department of Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
|
41
|
Hengherr S, Worland M, Reuner A, Brümmer F, Schill R. High‐Temperature Tolerance in Anhydrobiotic Tardigrades Is Limited by Glass Transition. Physiol Biochem Zool 2009; 82:749-55. [DOI: 10.1086/605954] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Paolantoni M, Comez L, Gallina ME, Sassi P, Scarponi F, Fioretto D, Morresi A. Light Scattering Spectra of Water in Trehalose Aqueous Solutions: Evidence for Two Different Solvent Relaxation Processes. J Phys Chem B 2009; 113:7874-8. [DOI: 10.1021/jp9004983] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Paolantoni
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - L. Comez
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - M. E. Gallina
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - P. Sassi
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - F. Scarponi
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - D. Fioretto
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| | - A. Morresi
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy, CNISM-Dipartimento di Fisica, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy, and CRS SOFT INFM-CNR, c/o Dipartimento di Fisica, Università La Sapienza, P.le Aldo Moro 4, I-00185 Roma, Italy
| |
Collapse
|
43
|
|
44
|
DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:425-9. [PMID: 19361569 DOI: 10.1016/j.cbpa.2009.04.611] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 02/04/2023]
Abstract
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 +/- 1.98% DNA in tail, compared to 0.44 +/- 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 +/- 6.41% of DNA was found in the comet tail. After ten months, 23.66 +/- 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.
Collapse
|
45
|
Nambu Z, Tanaka S, Nambu F, Nakano M. Influence of darkness on embryonic diapause termination in dormantArtemiacysts with no experience of desiccation. ACTA ACUST UNITED AC 2009; 311:182-8. [DOI: 10.1002/jez.516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
|
47
|
Nakahara Y, Watanabe M, Fujita A, Kanamori Y, Tanaka D, Iwata KI, Furuki T, Sakurai M, Kikawada T, Okuda T. Effects of dehydration rate on physiological responses and survival after rehydration in larvae of the anhydrobiotic chironomid. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1220-1225. [PMID: 18652833 DOI: 10.1016/j.jinsphys.2008.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 05/26/2023]
Abstract
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after.
Collapse
Affiliation(s)
- Yuichi Nakahara
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hengherr S, Brmmer F, Schill RO. Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00427.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Ricci C, Caprioli M, Fontaneto D, Melone G. Volume and morphology changes of a bdelloid rotifer species (Macrotrachela quadricornifera) during anhydrobiosis. J Morphol 2008; 269:233-9. [PMID: 17957710 DOI: 10.1002/jmor.10579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Following a study on the changes occurring in a bdelloid species (Macrotrachela quadricornifera, Rotifera, Bdelloidea) when entering anhydrobiosis, we investigated the changes in morphology, including weight and volume during the transition from the active hydrated to the dormant anhydrobiotic state by scanning electron microscopy, confocal microscopy and light microscopy. We compared sizes and morphologies of hydrated extended, hydrated contracted and anhydrobiotic specimens. Bdelloid musculature is defined: longitudinal muscles are contracted in the hydrated contracted animal (head and foot are retracted inside the trunk), but appear loose in the anhydrobiotic animal. When anhydrobiotic, M. quadricornifera appears much smaller in size, with a volume reduction of about 60% of the hydrated volume, and its internal organization undergoes remarkable modifications. Internal body cavities, clearly distinguishable in the hydrated extended and contracted specimens, are no longer visible in the anhydrobiotic specimen. Concomitantly, M. quadricornifera loses more than 95% of its weight when anhydrobiotic; this is more than expected from the volume reduction data and could indicate the presence of space-filling molecular species in the dehydrated animal. We estimate that the majority of body mass loss and volume reduction can be ascribed to the water loss from the body cavity during desiccation.
Collapse
Affiliation(s)
- Claudia Ricci
- Department of Biology, State University of Milan, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
50
|
Hengherr S, Heyer AG, Köhler HR, Schill RO. Trehalose and anhydrobiosis in tardigrades - evidence for divergence in responses to dehydration. FEBS J 2007; 275:281-8. [DOI: 10.1111/j.1742-4658.2007.06198.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|