1
|
Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308:F1047-55. [PMID: 25651559 DOI: 10.1152/ajprenal.00164.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
The balance between vasoconstrictor/sodium-retaining and vasodilator/natriuretic systems is essential for maintaining body fluid and electrolyte homeostasis. Natriuretic peptides, such as atrial natriuretic peptide (ANP), belong to the vasodilator/natriuretic system. ANP is produced by the conversion of pro-ANP into ANP, which is achieved by a proteolytical cleavage executed by corin. In the kidney, ANP binds to the natriuretic peptide receptor-A (NPR-A) and enhances its guanylyl cyclase activity, thereby increasing intracellular cyclic guanosine monophosphate production to promote natriuretic and renoprotective responses. In the glomerulus, ANP increases glomerular permeability and filtration rate and antagonizes the deleterious effects of the renin-angiotensin-aldosterone system activation. Along the nephron, natriuretic and diuretic actions of ANP are mediated by inhibiting the basolaterally expressed Na(+)-K(+)-ATPase, reducing apical sodium, potassium, and protein organic cation transporter in the proximal tubule, and decreasing Na(+)-K(+)-2Cl(-) cotransporter activity and renal concentration efficiency in the thick ascending limb. In the medullary collecting duct, ANP reduces sodium reabsorption by inhibiting the cyclic nucleotide-gated cation channels, the epithelial sodium channel, and the heteromeric channel transient receptor potential-vanilloid 4 and -polycystin 2 and diminishes vasopressin-induced water reabsorption. Long-term ANP treatment may lead to NPR-A desensitization and ANP resistance, resulting in augmented sodium and water reabsorption. In mice, corin deficiency impairs sodium excretion and causes salt-sensitive hypertension. Characteristics of ANP resistance and corin deficiency are also encountered in patients with edema-associated diseases, highlighting the importance of ANP signaling in salt-water balance and renal pathophysiology.
Collapse
Affiliation(s)
- Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland; and
| | - Qingyu Wu
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Ohio
| |
Collapse
|
2
|
Zhang SY, Cai ZX, Li P, Cai CY, Qu CL, Guo HS. Effect of dendroaspis natriuretic peptide (DNP) on L-type calcium channel current and its pathway. ACTA ACUST UNITED AC 2010; 164:120-5. [PMID: 20594955 DOI: 10.1016/j.regpep.2010.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/05/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
Abstract
Dendroaspis natriuretic peptide (DNP), a newly-described natriuretic peptide, relaxes gastrointestinal smooth muscle. L-type calcium channel currents play an important role in regulating smooth muscle contraction. The effect of DNP on L-type calcium channel currents in gastrointestinal tract is still unclear. This study was designed to investigate the effect of DNP on barium current (I(Ba)) through the L-type calcium channel in gastric antral myocytes of guinea pigs and cGMP-pathway mechanism. The whole-cell patch-clamp technique was used to record L-type calcium channel currents. The content of cGMP in guinea pig gastric antral smooth muscle and perfusion solution was measured using radioimmunoassay. DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in perfusion medium. DNP concentration-dependently inhibited I(Ba) in freshly isolated guinea pig gastric antral circular smooth muscle cells (SMCs) of guinea pigs. DNP-induced inhibition of I(Ba) was partially blocked by LY83583, an inhibitor of guanylate cyclase. KT5823, a cGMP-dependent protein kinase (PKG) inhibitor, almost completely blocked DNP-induced inhibition of I(Ba). However, DNP-induced inhibition of I(Ba) was potentiated by zaprinast, an inhibitor of cGMP-sensitive phosphodiesterase. Taken together, DNP inhibits L-type calcium channel currents via pGC-cGMP-PKG-dependent signal pathway in gastric antral myocytes of guinea pigs.
Collapse
Affiliation(s)
- Shu-Ying Zhang
- Department of Internal Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| | | | | | | | | | | |
Collapse
|
3
|
Cai CY, Cai ZX, Gu XY, Shan LJ, Wang YX, Yin XZ, Qi QH, Guo HS. Dendroaspis natriuretic peptide relaxes gastric antral circular smooth muscle of guinea-pig through the cGMP/cGMP-dependent protein kinase pathway. World J Gastroenterol 2008; 14:5461-6. [PMID: 18803360 PMCID: PMC2744167 DOI: 10.3748/wjg.14.5461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To systematically investigate if cGMP/cGMP-dependent protein kinase G (PKG) signaling pathway may participate in dendroaspis natriuretic peptide (DNP)-induced relaxation of gastric circular smooth muscle.
METHODS: The content of cGMP in guinea pig gastric antral smooth muscle tissue and perfusion solution were measured using radioimmunoassay; spontaneous contraction of gastric antral circular muscles recorded using a 4-channel physiograph; and Ca2+-activated K+ currents (IK(Ca)) and spontaneous transient outward currents (STOCs) in isolated gastric antral myocytes were recorded using the whole-cell patch clamp technique.
RESULTS: DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in the perfusion medium. DNP induced relaxation in gastric antral circular smooth muscle, which was inhibited by KT5823, a cGMP-dependent PKG inhibitor. DNP increased IK(Ca). This effect was almost completely blocked by KT5823, and partially blocked by LY83583, an inhibitor of guanylate cyclase to change the production of cGMP. DNP also increased STOCs. The effect of DNP on STOCs was abolished in the presence of KT5823, but not affected by KT-5720, a PKA-specific inhibitor.
CONCLUSION: DNP activates IK(Ca) and relaxes guinea-pig gastric antral circular smooth muscle via the cGMP/PKG-dependent singling axis instead of cAMP/PKA pathway.
Collapse
|
4
|
Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J. Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A 2004; 101:8215-20. [PMID: 15141089 PMCID: PMC419583 DOI: 10.1073/pnas.0400081101] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acid- and volume-sensitive TASK2 K+ channel is strongly expressed in renal proximal tubules and papillary collecting ducts. This study was aimed at investigating the role of TASK2 in renal bicarbonate reabsorption by using the task2 -/- mouse as a model. After backcross to C57BL6, task2 -/- mice showed an increased perinatal mortality and, in adulthood, a reduced body weight and arterial blood pressure. Patch-clamp experiments on proximal tubular cells indicated that TASK2 was activated during HCO3- transport. In control inulin clearance measurements, task2 -/- mice showed normal NaCl and water excretion. During i.v. NaHCO3 perfusion, however, renal Na+ and water reabsorption capacity was reduced in -/- animals. In conscious task2 -/- mice, blood pH, HCO3- concentration, and systemic base excess were reduced but urinary pH and HCO3- were increased. These data suggest that task2 -/- mice exhibit metabolic acidosis caused by renal loss of HCO3-. Both in vitro and in vivo results demonstrate the specific coupling of TASK2 activity to HCO3- transport through external alkalinization. The consequences of the task2 gene inactivation in mice are reminiscent of the clinical manifestations seen in human proximal renal tubular acidosis syndrome.
Collapse
Affiliation(s)
- Richard Warth
- Institute of Physiology, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ngezahayo A, Altmann B, Kolb HA. Regulation of ion fluxes, cell volume and gap junctional coupling by cGMP in GFSHR-17 granulosa cells. J Membr Biol 2004; 194:165-76. [PMID: 14502429 DOI: 10.1007/s00232-003-2033-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2002] [Indexed: 01/24/2023]
Abstract
Gap junctional communication between granulosa cells seems to play a crucial role for follicular growth and atresia. Application of the double whole-cell patch-clamp- and ratiometric fura-2-techniques allowed a simultaneous measurement of gap junctional conductance ( G(j)) and cytoplasmic concentration of free Ca(2+) ([Ca(2+)](i)) in a rat granulosa cell line GFSHR-17. The voltage-dependent gating of G(j) varied for different cell pairs. One population exhibited a bell-shape dependence of G(j) on transjunctional voltage, which was strikingly similar to that of Cx43/Cx43 homotypic gap junction channels expressed in pairs of oocytes of Xenopus laevis. Within 15-20 min, gap junctional uncoupling occurred spontaneously, which was preceded by a sustained increase of [Ca(2+)](i) and accompanied by shrinkage of cellular volume. These responses to the whole-cell configuration were avoided by absence of extracellular Ca(2+), blockage of K(+) efflux, or addition of 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) to the pipette solution. Even in the absence of extracellular Ca(2+) or blockage of K(+) efflux, formation of whole-cell configuration generated a Ca(2+) spike that could be suppressed by the presence of 8-Br-cGMP. We propose that intracellular cGMP regulates Ca(2+) release from intracellular Ca(2+) stores, which activates sustained Ca(2+) influx, K(+) efflux and cellular shrinkage. We discuss whether gap junctional conductance is directly affected by cGMP or by cellular shrinkage and whether gap junctional coupling and/or cell shrinkage is involved in the regulation of apoptotic/necrotic processes in granulosa cells.
Collapse
Affiliation(s)
- A Ngezahayo
- Institut für Biophysik, Universität Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | | | | |
Collapse
|
6
|
Notenboom S, Miller DS, Smits P, Russel FGM, Masereeuw R. Involvement of guanylyl cyclase and cGMP in the regulation of Mrp2-mediated transport in the proximal tubule. Am J Physiol Renal Physiol 2004; 287:F33-8. [PMID: 14970002 DOI: 10.1152/ajprenal.00443.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In killifish renal proximal tubules, endothelin-1 (ET-1), acting through a basolateral ET(B) receptor, nitric oxide synthase (NOS), and PKC, decreases cell-to-lumen organic anion transport mediated by the multidrug resistance protein isoform 2 (Mrp2). In the present study, we examined the roles of guanylyl cyclase and cGMP in ET signaling to Mrp2. Using confocal microscopy and quantitative image analysis to measure Mrp2-mediated transport of the fluorescent drug fluorescein methotrexate (FL-MTX), we found that oxadiazole quinoxalin (ODQ), an inhibitor of NO-sensitive guanylyl cyclase, blocked ET-1 signaling. ODQ was also effective when signaling was initiated by nephrotoxicants (gentamicin, amikacin, diatrizoate, HgCl(2), and CdCl(2)), which appear to stimulate ET release from the tubules themselves. ODQ blocked the effects of the NO donor sodium nitroprusside but not of the phorbol ester that activates PKC. Exposing tubules to 8-bromo-cGMP (8-BrcGMP), a cell-permeable cGMP analog, decreased luminal FL-MTX accumulation. This effect was abolished by bisindoylmaleimide (BIM), a PKC inhibitor, but not by N(G)-methyl-l-arginine, a NOS inhibitor. Together, these data indicate that ET regulation of Mrp2 involves activation of guanylyl cyclase and generation of cGMP. Signaling by cGMP follows NO release and precedes PKC activation.
Collapse
Affiliation(s)
- Sylvia Notenboom
- Department of Pharmacology and Toxicology, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Sasaki S, Siragy HM, Gildea JJ, Felder RA, Carey RM. Production and role of extracellular guanosine cyclic 3', 5' monophosphate in sodium uptake in human proximal tubule cells. Hypertension 2004; 43:286-91. [PMID: 14718358 DOI: 10.1161/01.hyp.0000112421.18551.1e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to determine the capability of human renal proximal tubule (RPT) to generate and export guanosine cyclic 3', 5' monophosphate (cGMP) in response to direct stimulation of soluble guanylyl cyclase by nitric oxide (NO) donors. In addition, we investigated whether cGMP extrusion from human RPT cells is required for inhibition of cellular sodium uptake. RPT cells were cultured from fresh human kidneys (normotensive subjects, n=4, mean age 65+/-4.7 years, 3 men, 1 woman; hypertensive patients, n=6, mean age 64+/-6.1 years, 4 men, 2 women) after unilateral nephrectomy. The fluorescence dye Sodium Green was employed to determine cytoplasmic Na+ concentration. In the presence of the Na+/K+ ATPase inhibitor ouabain, fluorescence was monitored at the appropriate wavelength (excitation 485 nm, emission 535 nm). Nitric oxide donor, S-nitroso-N-acetylpenicillamine (SNAP, 10(-4) M), increased both intracellular and extracellular cGMP (from 1.26+/-0.21 to 88.7+/-12.6 pmol/mg protein and from 0.58+/-0.10 to 9.24+/-1.9 pmol/mL, respectively, P<0.01) and decreased cellular Na+ uptake by 37.4+/-6.8% (P<0.05) compared with control. The effects of SNAP on cGMP production were similar in normotensive and hypertensive subjects. The increases in intracellular and extracellular cGMP concentration because of SNAP were blocked completely by soluble guanylyl cyclase inhibitor ODQ (1-H-[1,2,4] oxadiazolo [4,2-alpha] quinoxalin-1-one). Probenecid, an organic anion transport inhibitor, augmented the SNAP (10(-6) M)-induced increase in intracellular cGMP accumulation (from 4.9+/-0.9 to 9.8+/-1.5 pmol/mg protein, P<0.05), abrogated the SNAP-induced increase in extracellular cGMP extrusion (from 1.07+/-0.4 to 0.37+/-0.1 pmol/L, P<0.05) and blocked the SNAP-induced reduction in cellular Na+ uptake. Neither intracellular nor extracellular cGMP were influenced by l-arginine, the metabolic precursor of NO, or N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase. After exogenous administration of cGMP (10(-5) M) or its membrane-permeable analogue 8-Br-cGMP (10(-5) M), only 8-Br-cGMP crossed the cell membrane to increase intracellular cGMP (from 1.36+/-0.19 to 289.7+/-29.4 pmol/mg protein, P<0.01). However, both cGMP and 8-Br-cGMP were effective in decreasing cellular Na+ uptake. In conclusion, human RPT cells contain soluble guanylyl cyclase and are able to generate and export cGMP in response to NO. Because human RPT cells do not themselves contain constitutive NO synthase, the NO-generating cGMP must be derived from sources outside the human RPT. The cGMP cellular export system is critical in the regulation of RPT cellular Na+ absorption in humans.
Collapse
Affiliation(s)
- Shota Sasaki
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA
| | | | | | | | | |
Collapse
|
8
|
Hirsch JR, Skutta N, Schlatter E. Signaling and distribution of NPR-Bi, the human splice form of the natriuretic peptide receptor type B. Am J Physiol Renal Physiol 2003; 285:F370-4. [PMID: 12709393 DOI: 10.1152/ajprenal.00049.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we described a splice variant of the human natriuretic peptide receptor type B (NPR-Bi) in human proximal tubule cells [immortalized human kidney epithelial cells (IHKE-1) that lacks a functional guanylate cyclase domain (Hirsch JR, Meyer M, Mägert HJ, Forssmann WG, Mollerup S, Herter P, Weber G, Cermak R, Ankorina-Stark I, Schlatter E, and Kruhøffer M. J Am Soc Nephrol 10: 472-480, 1999). Its signaling pathway does not include cGMP, cAMP, or Ca2+ but leads to inhibition of K+ channels. In patch-clamp experiments, effects of tyrosine kinase receptor blockers on C-type natriuretic peptide (CNP)-mediated depolarizations of membrane voltages (Vm) of IHKE-1 cells were tested. The epidermal growth factor (EGF) receptor blocker genistein (10 microM) abolished the effect of CNP (0.2 +/- 0.4 mV, n = 7), and comparable results were obtained with 10 microM daidzein (n = 8). Aminogenistein (10 microM, n = 5) and tyrphostin AG1295 (10 microM, n = 5) had no significant effects. EGF (1 nM) hyperpolarized cells by -5.3 +/- 0.8 mV (n = 5). This effect was completely blocked by genistein or daidzein. The Cl- channel blocker NPPB (10 microM, n = 5) inhibited the EGF-mediated hyperpolarization. mRNA expression of NPR-B and NPR-Bi shows reversed patterns along the human nephron. NPR-B is highly expressed in glomeruli and proximal tubules, whereas NPR-Bi shows strong signals in the distal nephron. Expression of NPR-Bi in the cortical collecting duct was also confirmed with immunohistochemistry. In other human tissues, NPR-Bi shows strongest expression in pancreas and lung, whereas in the heart and liver NPR-B is the dominating receptor. In conclusion, CNP inhibits an apical K+ channel in IHKE-1 cells independently of cGMP and so far this effect can only be blocked by genistein and daidzein. Tyrosine phosphorylation might be the missing link in the signaling pathway of CNP/NPR-Bi.
Collapse
Affiliation(s)
- Jochen R Hirsch
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Domagkstr. 3a, D-48149 Münster, Germany
| | | | | |
Collapse
|
9
|
Warth R. Potassium channels in epithelial transport. Pflugers Arch 2003; 446:505-13. [PMID: 12707775 DOI: 10.1007/s00424-003-1075-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 03/26/2003] [Indexed: 10/26/2022]
Abstract
Epithelial cells in the kidney, gastrointestinal tract and exocrine glands are engaged in vectorial transport of salt and nutrients. In these tissues, K(+) channels play an important role for the stabilization of membrane voltage and maintenance of the driving force for electrogenic transport. Luminal K(+) channels represent an exit pathway for the excretion of K(+) in secreted fluid, urine and faeces, thereby effecting body K(+) homeostasis. Indeed, the expression and function of several luminal K(+) channels is modulated by hormones regulating water, Na(+), and K(+) metabolism. In addition to net transport of K(+) in the serosal (or apical) direction, K(+) channels can be coupled functionally to K(+)-transporting ATPases such as the basolateral Na(+)/K(+) ATPase or the luminal H(+)/K(+) ATPase. These ATPases export Na(+) or H(+) and take up K(+), which is then recycled via K(+) channels. This review gives a short overview on the molecular identity of epithelial K(+) channels and summarizes the different mechanisms of K(+) channel function during transport in epithelial cells.
Collapse
Affiliation(s)
- Richard Warth
- Physiologisches Institut, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
10
|
Nakamura K, Hirano J, Itazawa SI, Kubokawa M. Protein kinase G activates inwardly rectifying K(+) channel in cultured human proximal tubule cells. Am J Physiol Renal Physiol 2002; 283:F784-91. [PMID: 12217870 DOI: 10.1152/ajprenal.00023.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An ATP-regulated inwardly rectifying K(+) channel, whose activity is enhanced by PKA, is present in the plasma membrane of cultured human proximal tubule cells. In this study, we investigated the effects of PKG on this K(+) channel, using the patch-clamp technique. In cell-attached patches, bath application of a membrane-permeant cGMP analog, 8-bromoguanosine 3',5'-monophosphate (8-BrcGMP; 100 microM), stimulated channel activity, whereas application of a PKG-specific inhibitor, KT-5823 (1 microM), reduced the activity. Channel activation induced by 8-BrcGMP was observed even in the presence of a PKA-specific inhibitor, KT-5720 (500 nM), which was abolished by KT-5823. Direct effects of cGMP and PKG were examined with inside-out patches in the presence of 1 mM MgATP. Although cytoplasmic cGMP (100 microM) alone had little effect on channel activity, subsequent addition of PKG (500 U/ml) enhanced it. Furthermore, bath application of atrial natriuretic peptide (ANP; 20 nM) in cell-attached patches stimulated channel activity, which was blocked by KT-5823. In conclusion, cGMP/PKG-dependent processes participate in activating the ATP-regulated K(+) channel and producing the stimulatory effect of ANP on channel activity.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology II, Iwate Medical University School of Medicine, Morioka 020-8505, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general.
Collapse
Affiliation(s)
- Shin-Ho Chung
- Department of Physics, The Faculty of Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
12
|
Sindiće A, Başoglu C, Cerçi A, Hirsch JR, Potthast R, Kuhn M, Ghanekar Y, Visweswariah SS, Schlatter E. Guanylin, uroguanylin, and heat-stable euterotoxin activate guanylate cyclase C and/or a pertussis toxin-sensitive G protein in human proximal tubule cells. J Biol Chem 2002; 277:17758-64. [PMID: 11889121 DOI: 10.1074/jbc.m110627200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane guanylate cyclase C (GC-C) is the receptor for guanylin, uroguanylin, and heat-stable enterotoxin (STa) in the intestine. GC-C-deficient mice show resistance to STa in intestine but saluretic and diuretic effects of uroguanylin and STa are not disturbed. Here we describe the cellular effects of these peptides using immortalized human kidney epithelial (IHKE-1) cells with properties of the proximal tubule, analyzed with the slow-whole-cell patch clamp technique. Uroguanylin (10 or 100 nm) either hyperpolarized or depolarized membrane voltages (V(m)). Guanylin and STa (both 10 or 100 nm), as well as 8-Br-cGMP (100 microm), depolarized V(m). All peptide effects were absent in the presence of 1 mm Ba(2+). Uroguanylin and guanylin changed V(m) pH dependently. Pertussis toxin (1 microg/ml, 24 h) inhibited hyperpolarizations caused by uroguanylin. Depolarizations caused by guanylin and uroguanylin were blocked by the tyrosine kinase inhibitor, genistein (10 microm). All three peptides increased cellular cGMP. mRNA for GC-C was detected in IHKE-1 cells and in isolated human proximal tubules. In IHKE-1 cells GC-C was also detected by immunostaining. These findings suggest that GC-C is probably the receptor for guanylin and STa. For uroguanylin two distinct signaling pathways exist in IHKE-1 cells, one involves GC-C and cGMP as second messenger, the other is cGMP-independent and connected to a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- Aleksandra Sindiće
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Domagkstr. 3a, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Natriuretic peptides (NP), together with nitric oxide (NO) are powerful relaxing factors acting via a common second messenger, cyclic GMP (cGMP). Together with other vasoactive modulators, these vasorelaxing factors play an essential role in regulating the function of kidney glomeruli. The presence of NP receptors in podocytes has been well documented. Recently, also mRNA for soluble guanylate cyclase, the NO receptor, has been shown in these cells. Stimulation of podocytes with atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP), and NO donors results in considerable upregulation of cellular cGMP synthesis. The podocyte foot processes contain a highly organized network of microfilaments adhering to the glomerular basement membrane (GBM). Changes in podocyte cytoskeleton accompanied by detachment of the cells from the GBM are closely associated with many glomerulopathies. The contractile apparatus in the podocyte foot processes seems to be an obvious target for the cyclic GMP signaling cascade. However, little is known about implications of the cGMP synthesis in these cells. We briefly review the current art regarding generation and modulation of cyclic GMP levels in podocytes. We discuss also the possible targets for this secondary messenger as well as its functional role in podocytes.
Collapse
Affiliation(s)
- Barbara Lewko
- epartment of Immunopathology, Medical University of Gdansk, 80-952 Gdansk, Poland.
| | | |
Collapse
|
14
|
Nakamura K, Hirano J, Kubokawa M. An ATP-regulated and pH-sensitive inwardly rectifying K(+) channel in cultured human proximal tubule cells. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:523-30. [PMID: 11564289 DOI: 10.2170/jjphysiol.51.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although renal K(+) channels along the nephron have been explored in various animal species, little is known about the K(+) channels in human proximal tubule cells. Using the patch-clamp technique, we investigated the properties of an inwardly rectifying K(+) channel present in the surface membrane of cultured human proximal tubule cells of normal kidney origin. This channel was the most frequently observed K(+) channel in cell-attached patches, and cytoplasmic ATP was required to maintain channel activity in inside-out patches. Its single channel conductance was about 42 pS for inward currents and 7 pS for outward currents under the symmetrical K(+) condition. The ATP effect on channel activity was dose-dependently stimulatory within a range of 0.1 to 10 mM, and a nonhydrolyzable ATP analog, AMP-PNP (3 mM), had no effect on channel activity in either the presence or absence of ATP (1 mM). The channel activity observed in cell-attached patches was reduced to 30 to 50% of controls by a membrane-permeable nonspecific protein kinase inhibitor, K252a (1 microM), or a potent protein kinase A inhibitor, KT5720 (500 nM). In contrast, a membrane-permeable cAMP analog, 8Br-cAMP (100 microM), induced a twofold increase in channel activity. The addition of a catalytic subunit of protein kinase A (PKA-CS, 100 U/ml) to the bath in inside-out patches stimulated channel activity in the presence of 1 mM ATP. Furthermore, the channel activity maintained with 1 mM ATP in inside-out patches was suppressed by internal acidification and enhanced by alkalization. These results suggest that the activity of the inwardly rectifying K(+) channel in cultured human proximal tubule cells was ATP-dependent and regulated at least in part by cAMP/PKA-mediated phosphorylation processes and intracellular pH.
Collapse
Affiliation(s)
- K Nakamura
- Department of Physiology II, School of Medicine, Iwate Medical University, Morioka, 020-8505, Japan.
| | | | | |
Collapse
|
15
|
Derst C, Hirsch JR, Preisig-Müller R, Wischmeyer E, Karschin A, Döring F, Thomzig A, Veh RW, Schlatter E, Kummer W, Daut J. Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. Kidney Int 2001; 59:2197-205. [PMID: 11380822 DOI: 10.1046/j.1523-1755.2001.00735.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND K(+) channels have important functions in the kidney, such as maintenance of the membrane potential, volume regulation, recirculation, and secretion of potassium ions. The aim of this study was to obtain more information on the localization and possible functional role of the inwardly rectifying K(+) channel, Kir7.1. METHODS Kir7.1 cDNA (1114 bp) was isolated from guinea pig kidney (gpKir7.1), and its tissue distribution was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, a genomic DNA fragment (6153 bp) was isolated from a genomic library. cRNA was expressed in Xenopus laevis oocytes for functional studies. Immunohistochemistry and RT-PCR were used to localize Kir7.1 in guinea pig and human kidney. RESULTS The expression of gpKir7.1 in Xenopus laevis oocytes revealed inwardly rectifying K(+) currents. The reversal potential was strongly dependent on the extracellular K(+) concentration, shifting from -14 mV at 96 mmol/L K(+) to -90 mV at 1 mmol/L K(+). gpKir7.1 showed a low affinity for Ba(2+). Significant expression of gpKir7.1 was found in brain, kidney, and lung, but not in heart, skeletal muscle, liver, or spleen. Immunocytochemical detection in guinea pig identified the gpKir7.1 protein in the basolateral membrane of epithelial cells of the proximal tubule. RT-PCR analysis identified strong gpKir7.1 expression in the proximal tubule and weak expression in glomeruli and thick ascending limb. In isolated human tubule fragments, RT-PCR showed expression in proximal tubule and thick ascending limb. CONCLUSION Our results suggest that Kir7.1 may contribute to basolateral K(+) recycling in the proximal tubule and in the thick ascending limb.
Collapse
Affiliation(s)
- C Derst
- Institut für Normale und Pathologische Physiologie, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 2000; 275:33536-41. [PMID: 10922374 DOI: 10.1074/jbc.m005670200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many signal transduction pathways are mediated by the second messengers cGMP and cAMP, cGMP- and cAMP-dependent protein kinases (cGK and PKA), phosphodiesterases, and ion channels. To distinguish among the different cGMP effectors, inhibitors of cGK and PKA have been developed including the K-252 compound KT5823 and the isoquinolinesulfonamide H89. KT5823, an in vitro inhibitor of cGK, has also been used in numerous studies with intact cells to implicate or rule out the involvement of this protein kinase in a given cellular response. However, the efficacy and specificity of KT5823 as cGK inhibitor in intact cells or tissues have never been demonstrated. Here, we analyzed the effects of both KT5823 and H89 on cyclic-nucleotide-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in intact human platelets and rat mesangial cells. These two cell types both express high levels of cGK. KT5823 inhibited purified cGK. However, with both intact human platelets and rat mesangial cells, KT5823 failed to inhibit cGK-mediated serine 157 and serine 239 phosphorylation of VASP induced by nitric oxide, atrial natriuretic peptide, or the membrane-permeant cGMP analog, 8-pCPT-cGMP. KT5823 enhanced 8-pCPT-cGMP-stimulated VASP phosphorylation in platelets and did not inhibit forskolin-stimulated VASP phosphorylation in either platelets or mesangial cells. In contrast H89, an inhibitor of both PKA and cGK, clearly inhibited 8-pCPT-cGMP and forskolin-stimulated VASP phosphorylation in the two cell types. The data indicate that KT5823 inhibits purified cGK but does not affect a cGK-mediated response in the two different cell types expressing cGK I. These observations indicate that data that interpret the effects of KT5823 in intact cells as the major or only criteria supporting the involvement of cGK clearly need to be reconsidered.
Collapse
Affiliation(s)
- M Burkhardt
- Institute of Clinical Biochemistry and Pathobiochemistry and the Division of Nephrology, Medical University Clinic Wuerzburg, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giebisch G, Wang W. Renal tubule potassium channels: function, regulation and structure. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:153-73. [PMID: 11114953 DOI: 10.1046/j.1365-201x.2000.00770.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- G Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|