1
|
Rubalcaba JG, Jimeno B. Body temperature and activity patterns modulate glucocorticoid levels across lizard species: A macrophysiological approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1032083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Collapse
|
2
|
Mohanty NP, Wagener C, Herrel A, Thaker M. The ecology of sleep in non-avian reptiles. Biol Rev Camb Philos Soc 2021; 97:505-526. [PMID: 34708504 DOI: 10.1111/brv.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.
Collapse
Affiliation(s)
- Nitya P Mohanty
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
3
|
Wohlfeil CK, Godfrey SS, Leu ST, Clayton J, Gardner MG. Spatial proximity and asynchronous refuge sharing networks both explain patterns of tick genetic relatedness among lizards, but in different years. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Caroline K. Wohlfeil
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | | | - Stephan T. Leu
- School of Animal and Veterinary Sciences University of Adelaide Adelaide South Australia Australia
| | - Jessica Clayton
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit South Australian Museum Adelaide South Australia Australia
| |
Collapse
|
4
|
Kearney MR, Munns SL, Moore D, Malishev M, Bull CM. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1326] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael R. Kearney
- School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Suzanne L. Munns
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Queensland 4810 Australia
| | - Danae Moore
- Department of Biological Sciences; Macquarie University; North Ryde New South Wales 2109 Australia
- Australian Wildlife Conservancy; Newhaven Wildlife Sanctuary; P.M.B. 146 Alice Springs Northern Territory 0872 Australia
| | - Matthew Malishev
- School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
- Centre of Excellence for Biosecurity Risk Analysis; School of BioSciences; The University of Melbourne; Parkville Victoria 3010 Australia
| | - C. Michael Bull
- School of Biological Sciences; Flinders University; Adelaide South Australia 5001 Australia
| |
Collapse
|
5
|
Treilibs CE, Pavey CR, Raghu S, M. Bull C. Weather correlates of temporal activity patterns in a desert lizard: insights for designing more effective surveys. J Zool (1987) 2016. [DOI: 10.1111/jzo.12381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. E. Treilibs
- School of Biological Sciences Flinders University Adelaide South Australia Australia
- Flora and Fauna Division NT Department of Land Resource Management Alice Springs Northern Territory Australia
| | - C. R. Pavey
- CSIRO Land and Water Alice Springs Northern Territory Australia
| | - S. Raghu
- CSIRO Health & Biosecurity Brisbane Australia
| | - C. M. Bull
- School of Biological Sciences Flinders University Adelaide South Australia Australia
| |
Collapse
|
6
|
Lindström T, Phillips BL, Brown GP, Shine R. Identifying the time scale of synchronous movement: a study on tropical snakes. MOVEMENT ECOLOGY 2015; 3:12. [PMID: 25941572 PMCID: PMC4418100 DOI: 10.1186/s40462-015-0038-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Individual movement is critical to organismal fitness and also influences broader population processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age), and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those processes, because externally-imposed pressures should generate synchronous displacements among individuals within a population, whereas intrinsic factors should generate consistency through time within each individual. External and intrinsic factors may vary in importance at different time scales. RESULTS In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further studied autocorrelation in fluctuations of displacement distances as "one over f noise". Displacement distances were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the methodology can reveal time scales of particular interest for synchrony and found that for the analysed data, synchrony was only present at time scales above approximately three weeks. CONCLUSION We conclude that the spectral representation combined with Bayesian inference is a promising approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where global external drivers have a larger impact on the movement behaviour. Our results suggest that for the considered study period, movement at shorter time scales was primarily driven by factors at the individual level; daily fluctuations in weather conditions had little effect on snake movement.
Collapse
Affiliation(s)
- Tom Lindström
- />Department of Physics, Biology and Chemistry, Linköping University, 58183 Linköping, Sweden
| | - Benjamin L Phillips
- />School of Biosciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gregory P Brown
- />School of Biological Sciences, University of Sydney, Sydney, NSW 2006 Australia
| | - Richard Shine
- />School of Biological Sciences, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
7
|
A contact-based social network of lizards is defined by low genetic relatedness among strongly connected individuals. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Activity Patterns and Movements of Free-Ranging Bluetongue Lizards (Tiliqua scincoides intermediaandTiliqua multifasciata) in the Australian Wet-Dry Tropics. J HERPETOL 2014. [DOI: 10.1670/12-256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
One solution for two challenges: the lizard Microlophus atacamensis avoids overheating by foraging in intertidal shores. PLoS One 2014; 9:e97735. [PMID: 24839969 PMCID: PMC4026523 DOI: 10.1371/journal.pone.0097735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
In lizards, one of the most important behavioral mechanisms to cope with spatial and temporal variations in thermal resources observed is activity time. The longer a lizard can maintain activity, the more time it has to forage and reach larger adult body size. We studied the behavioral adjustments to different climatic regimens on daily and seasonal scales in three natural populations of the lizard Microlophus atacamensis along a latitudinal temperature and rainfall gradient. We also used Niche Mapper to determinate the amount of thermally suitable time for activity for this species. Abundance and daily activity patterns varied greatly over the year for the three populations. In summer and spring, the daily activity times were greater, and were reduced in fall and winter seasons. In summer, when stressful heat loads should prohibit activity over a midday gap, lizards did not show bimodal patterns of activity. Instead, they move to the cooler intertidal habitat. Abundance and thermal quality in the southernmost coolest site was lower, and the potential annual activity time decreases with latitude. Contrary to expectations, lizards from this locality showed the largest body sizes possibly due to diet and/or time to sexual maturation. Our results indicate that the intertidal habitat is a key factor that influences daily and seasonal activity of M. atacamensis lizards. While this habitat is not climatically optimal for lizards, it allows them to behaviorally extend their activity window and gain access to food in the intertidal areas.
Collapse
|
10
|
Wohlfiel CK, Leu ST, Godfrey SS, Bull CM. Testing the robustness of transmission network models to predict ectoparasite loads. One lizard, two ticks and four years. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2014; 2:271-7. [PMID: 24533346 PMCID: PMC3862537 DOI: 10.1016/j.ijppaw.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022]
Abstract
Transmission networks predict the paths of parasite infections around a population. We developed transmission networks for ticks on lizards based on refuge sharing. The networks predicted infestation loads of one tick species but not another. Results suggest different dynamics of transmission for ecologically similar species.
We investigated transmission pathways for two tick species, Bothriocroton hydrosauri and Amblyomma limbatum, among their sleepy lizard (Tiliqua rugosa) hosts in a natural population in South Australia. Our aim was to determine whether a transmission network model continued to predict parasite load patterns effectively under varying ecological conditions. Using GPS loggers we identified the refuge sites used by each lizard on each day. We estimated infectious time windows for ticks that detached from a lizard in a refuge. Time windows were from the time when a detached tick molted and become infective, until the time it died from desiccation while waiting for a new host. Previous research has shown that A. limbatum molts earlier and survives longer than B. hydrosauri. We developed two transmission network models based on these differences in infective time windows for the two tick species. Directed edges were generated in the network if one lizard used a refuge that had previously been used by another lizard within the infectious time window. We used those models to generate values of network node in-strength for each lizard, a measure of how strongly connected an individual is to other lizards in the transmission network, and a prediction of infection risk for each host. The consistent correlations over time between B. hydrosauri infection intensity and network derived infection risk suggest that network models can be robust to environmental variation among years. However, the contrasting lack of consistent correlation in A. limbatum suggests that the utility of the same network models may depend on the specific biology of a parasite species.
Collapse
Affiliation(s)
- Caroline K Wohlfiel
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| | - Stephan T Leu
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| | - Stephanie S Godfrey
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, Australia ; School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| |
Collapse
|
11
|
Price-Rees SJ, Lindström T, Brown GP, Shine R. The effects of weather conditions on dispersal behaviour of free-ranging lizards (Tiliqua, Scincidae) in tropical Australia. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Tom Lindström
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Gregory P. Brown
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Richard Shine
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
12
|
|
13
|
Bull CM, Godfrey SS, Gordon DM. Social networks and the spread of Salmonella in a sleepy lizard population. Mol Ecol 2012; 21:4386-92. [PMID: 22845647 DOI: 10.1111/j.1365-294x.2012.05653.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although theoretical models consider social networks as pathways for disease transmission, strong empirical support, particularly for indirectly transmitted parasites, is lacking for many wildlife populations. We found multiple genetic strains of the enteric bacterium Salmonella enterica within a population of Australian sleepy lizards (Tiliqua rugosa), and we found that pairs of lizards that shared bacterial genotypes were more strongly connected in the social network than were pairs of lizards that did not. In contrast, there was no significant association between spatial proximity of lizard pairs and shared bacterial genotypes. These results provide strong correlative evidence that these bacteria are transmitted from host to host around the social network, rather than that adjacent lizards are picking up the same bacterial genotype from some common source.
Collapse
Affiliation(s)
- C M Bull
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia.
| | | | | |
Collapse
|
14
|
Godfrey SS, Bradley JK, Sih A, Bull CM. Lovers and fighters in sleepy lizard land: where do aggressive males fit in a social network? Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Fei T, Skidmore AK, Venus V, Wang T, Schlerf M, Toxopeus B, van Overjijk S, Bian M, Liu Y. A body temperature model for lizards as estimated from the thermal environment. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Christy MT, Yackel Adams AA, Rodda GH, Savidge JA, Tyrrell CL. Modelling detection probabilities to evaluate management and control tools for an invasive species. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2009.01753.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|