1
|
Lan L, Nègre N. Heterosis effect for larval performance of fall armyworm interstrain hybrids. INSECT SCIENCE 2024; 31:1296-1312. [PMID: 37969057 DOI: 10.1111/1744-7917.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Spodoptera frugiperda, also known as fall armyworm (FAW), is an invasive crop pest that can feed on a variety of host plants, posing a serious threat to food security. There are two sympatric strains of FAW that are morphologically identical but described with different food preferences: the "rice strain" (SfR) and the "corn strain" (SfC). A few genetic loci exist to identify these two strains. Mitochondrial and Z-chromosome-linked haplotypes are the most used, but the biggest part of the genome displays little polymorphism between strains that could explain their adaptation to different plants. We have previously observed consistent transcription differences between the strains in both laboratory and natural populations. Therefore, we wonder if there are effects from host-strain-associated loci, maternally or paternally inherited, on FAW performance that could explain the divergence between the two FAW strains. To test this hypothesis, we first produced two F1 hybrid generations (SfR ♀ × SfC ♂, SfC ♀ × SfR ♂). These reciprocal hybrids should be heterozygous for all chromosomes except for the maternally inherited mitochondrial and sexual W chromosomes. To evaluate whether plant preference is determined by these genetic loci, we cultivated the two hybrids and the two parental strains in triplicate on an artificial diet and recorded several phenotypic traits such as weight over time, survival rate, emerging rate, developmental time, and sex ratio. Then, the same performance experiment was carried out on corn plants. Surprisingly, on the artificial diet, the two hybrid genotypes were both more performant than the two parental strains in terms of survival rate, pupal emerging rate, and developmental time, whereas they were intermediate to the inbred parental strains in pupal weight. On the corn plant diet, both hybrid genotypes outperformed the two parental strains in larval weight. Although these asymmetrical results revealed that mitochondrial or sex-linked haplotypes alone cannot explain the performance differences, they suggested a heterosis effect in FAW. A reduction of the female number for the CR genotype and the decreased F1 offspring reproduction in both hybrids suggested the possibility of Haldane's rule, which might be explained by the dominance model.
Collapse
Affiliation(s)
- Laijiao Lan
- DGIMI, University of Montpellier, INRAE, Montpellier, France
| | - Nicolas Nègre
- DGIMI, University of Montpellier, INRAE, Montpellier, France
| |
Collapse
|
2
|
Labroo MR, Studer AJ, Rutkoski JE. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front Genet 2021; 12:643761. [PMID: 33719351 PMCID: PMC7943638 DOI: 10.3389/fgene.2021.643761] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Collapse
Affiliation(s)
| | | | - Jessica E. Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Comparative Transcriptomic Analysis of Gene Expression Inheritance Patterns Associated with Cabbage Head Heterosis. PLANTS 2021; 10:plants10020275. [PMID: 33572601 PMCID: PMC7912167 DOI: 10.3390/plants10020275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The molecular mechanism of heterosis or hybrid vigor, where F1 hybrids of genetically diverse parents show superior traits compared to their parents, is not well understood. Here, we studied the molecular regulation of heterosis in four F1 cabbage hybrids that showed heterosis for several horticultural traits, including head size and weight. To examine the molecular mechanisms, we performed a global transcriptome profiling in the hybrids and their parents by RNA sequencing. The proportion of genetic variations detected as single nucleotide polymorphisms and small insertion–deletions as well as the numbers of differentially expressed genes indicated a larger role of the female parent than the male parent in the genetic divergence of the hybrids. More than 86% of hybrid gene expressions were non-additive. More than 81% of the genes showing divergent expressions showed dominant inheritance, and more than 56% of these exhibited maternal expression dominance. Gene expression regulation by cis-regulatory mechanisms appears to mediate most of the gene expression divergence in the hybrids; however, trans-regulatory factors appear to have a higher effect compared to cis-regulatory factors on parental expression divergence. These observations bring new insights into the molecular mechanisms of heterosis during the cabbage head development.
Collapse
|
4
|
Mackay IJ, Cockram J, Howell P, Powell W. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:26-34. [PMID: 32996672 PMCID: PMC7769232 DOI: 10.1111/pbi.13481] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 05/12/2023]
Abstract
Transgressive segregation and heterosis are the reasons that plant breeding works. Molecular explanations for both phenomena have been suggested and play a contributing role. However, it is often overlooked by molecular genetic researchers that transgressive segregation and heterosis are most simply explained by dispersion of favorable alleles. Therefore, advances in molecular biology will deliver the most impact on plant breeding when integrated with sources of heritable trait variation - and this will be best achieved within a quantitative genetics framework. An example of the power of quantitative approaches is the implementation of genomic selection, which has recently revolutionized animal breeding. Genomic selection is now being applied to both hybrid and inbred crops and is likely to be the major source of improvement in plant breeding practice over the next decade. Breeders' ability to efficiently apply genomic selection methodologies is due to recent technology advances in genotyping and sequencing. Furthermore, targeted integration of additional molecular data (such as gene expression, gene copy number and methylation status) into genomic prediction models may increase their performance. In this review, we discuss and contextualize a suite of established quantitative genetics themes relating to hybrid vigour, transgressive segregation and their central relevance to plant breeding, with the aim of informing crop researchers outside of the quantitative genetics discipline of their relevance and importance to crop improvement. Better understanding between molecular and quantitative disciplines will increase the potential for further improvements in plant breeding methodologies and so help underpin future food security.
Collapse
Affiliation(s)
- Ian J. Mackay
- SRUC (Scotland’s Rural College)EdinburghUK
- IMplant ConsultancyChelmsfordUK
| | | | | | | |
Collapse
|
5
|
Howlader J, Robin AHK, Natarajan S, Biswas MK, Sumi KR, Song CY, Park JI, Nou IS. Transcriptome Analysis by RNA-Seq Reveals Genes Related to Plant Height in Two Sets of Parent-hybrid Combinations in Easter lily (Lilium longiflorum). Sci Rep 2020; 10:9082. [PMID: 32494055 PMCID: PMC7270119 DOI: 10.1038/s41598-020-65909-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, two different hybrids of Easter lily (Lilium longiflorum), obtained from two cross combinations, along with their four parents were sequenced by high–throughput RNA–sequencing (RNA–Seq) to find out differentially expressed gene in parent-hybrid combinations. The leaf mRNA profiles of two hybrids and their four parents were RNA–sequenced with a view to identify the potential candidate genes related to plant height heterosis. In both cross combinations, based to morphological traits mid–parent heterosis (MPH) was higher than high–parent heterosis (HPH) for plant height, leaf length, and number of flowers whereas HPH was higher than MPH for flowering time. A total of 4,327 differentially expressed genes (DEGs) were identified through RNA–Seq between the hybrids and their parents based on fold changes (FC) ≥ 2 for up– and ≤ –2 for down–regulation. Venn diagram analysis revealed that there were 703 common DEGs in two hybrid combinations, those were either up– or down–regulated. Most of the commonly expressed DEGs exhibited higher non–additive effects especially overdominance (75.9%) rather than additive (19.4%) and dominance (4.76%) effects. Among the 384 functionally annotated DEGs identified through Blast2GO tool, 12 DEGs were up–regulated and 16 of them were down–regulated in a similar fashion in both hybrids as revealed by heat map analysis. These 28 universally expressed DEGs were found to encode different types of proteins and enzymes those might regulate heterosis by modulating growth, development and stress–related functions in lily. In addition, gene ontology (GO) analysis of 260 annotated DEGs revealed that biological process might play dominant role in heterotic expression. In this first report of transcriptome sequencing in Easter lily, the notable universally up-regulated DEGs annotated ABC transporter A family member–like, B3 domain–containing, disease resistance RPP13/1, auxin–responsive SAUR68–like, and vicilin–like antimicrobial peptides 2–2 proteins those were perhaps associated with plant height heterosis. The genes expressed universally due to their overdominace function perhaps influenced MPH for greater plant height― largely by modulating biological processes involved therein. The genes identified in this study might be exploited in heterosis breeding for plant height of L. longiflorum.
Collapse
Affiliation(s)
- Jewel Howlader
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Horticulture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Kanij Rukshana Sumi
- Department of Fisheries Science, Chonnam National University, 50, Daehak-ro, Yeosu, Jeonnam, 59626, Republic of Korea.,Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Cheon Young Song
- Department of Floriculture, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 54874, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
6
|
Fiévet JB, Nidelet T, Dillmann C, de Vienne D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front Genet 2018; 9:159. [PMID: 29868111 PMCID: PMC5968397 DOI: 10.3389/fgene.2018.00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Collapse
Affiliation(s)
- Julie B Fiévet
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thibault Nidelet
- Sciences Pour l'Œnologie, INRA, Université de Montpellier, Montpellier, France
| | - Christine Dillmann
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique de Vienne
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster. Sci Rep 2016; 6:21124. [PMID: 26928435 PMCID: PMC4772002 DOI: 10.1038/srep21124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
We observed heteroses for body weight in Drosophila melanogaster after generating hybrids from three inbred lines. To better understand the mechanism for this phenomenon at the mRNA level, we compared the mRNA profiles of the parental and hybrid lines using high-throughput RNA-seq. A total of 5877 differentially expressed genes (DEGs) were found and about 92% of these exhibited parental expression level dominance. Genes in the dominance category were functionally characterized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the gene classifications offered by the Gene Ontology (GO) Consortium. The analysis identified genes associated with crucial processes such as development and growth in all three crosses. Functional assignments involving aminoglycan metabolism, starch and sucrose metabolism, and galactose metabolism are significantly overrepresented amongst the 215 common dominance DEGs. We conclude that dominance DEGs are important in heteroses in Drosophila melanogaster and contribute specifically to body weight heterosis.
Collapse
|
8
|
Li Q, Li Y, Moose SP, Hudson ME. Transposable elements, mRNA expression level and strand-specificity of small RNAs are associated with non-additive inheritance of gene expression in hybrid plants. BMC PLANT BIOLOGY 2015; 15:168. [PMID: 26139102 PMCID: PMC4490736 DOI: 10.1186/s12870-015-0549-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/14/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene expression inheritance patterns in Arabidopsis hybrid plants were investigated for correlation with the presence of transposable elements (TEs) and small RNA profile. RESULTS The presence of TEs in a gene and the expression of small RNA matching a gene were both found to be associated with non-additive mRNA inheritance patterns in hybrids. Expression levels below mid-parent values in the hybrids were associated with low mRNA expression in parents, with the presence of small RNA from both strands, and with the presence of TEs. High-parent dominance of mRNA levels was found to be associated with high parental mRNA expression levels, the absence of TEs, and for some genes, with small RNA fragments that are predominantly from the sense strand. These small RNAs exhibit a broader size distribution than siRNA and reduced nucleotide end bias, which are consistent with an origin from degraded mRNA. Thus, increased as well as decreased gene expression in hybrids relative to the parental mean is associated with gene expression levels, TE presence and small RNA fragments with differing characteristics. CONCLUSIONS The data presented here is consistent with a role for differential mRNA decay kinetics as one mechanism contributing to high-parent dominance in gene expression. Our evidence is also consistent with trans repression by siRNA and TEs as the cause of low-parent dominance.
Collapse
Affiliation(s)
- Qing Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ying Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Stephen P Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Dan Z, Hu J, Zhou W, Yao G, Zhu R, Huang W, Zhu Y. Hierarchical additive effects on heterosis in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:738. [PMID: 26442051 PMCID: PMC4566041 DOI: 10.3389/fpls.2015.00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 05/21/2023]
Abstract
Exploitation of heterosis in crops has contributed greatly to improvement in global food and energy production. In spite of the pervasive importance of heterosis, a complete understanding of its mechanisms has remained elusive. In this study, a small test-crossed rice population was constructed to investigate the formation mechanism of heterosis for 13 traits. The results of the relative mid-parent heterosis and modes of inheritance of all investigated traits demonstrated that additive effects were the foundation of heterosis for complex traits in a hierarchical structure, and multiplicative interactions among the component traits were the framework of heterosis in complex traits. Furthermore, new balances between unit traits and related component traits provided hybrids with the opportunity to achieve an optimal degree of heterosis for complex traits. This study dissected heterosis of both reproductive and vegetative traits from the perspective of hierarchical structure for the first time. Additive multiplicative interactions of component traits were proven to be the origin of heterosis in complex traits. Meanwhile, more attention should be paid to component traits, rather than complex traits, in the process of revealing the mechanism of heterosis.
Collapse
Affiliation(s)
- Zhiwu Dan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Guoxin Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
- *Correspondence: Wenchao Huang and Yingguo Zhu, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China, ;
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
- Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, Wuhan UniversityWuhan, China
- The Yangzte River Valley Hybrid Rice Collaboration Innovation Center, Wuhan UniversityWuhan, China
- *Correspondence: Wenchao Huang and Yingguo Zhu, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China, ;
| |
Collapse
|
10
|
Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:71-88. [PMID: 23394499 DOI: 10.1146/annurev-arplant-042110-103827] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although heterosis, or hybrid vigor, is widely exploited in agriculture, a complete description of its molecular underpinnings has remained elusive despite extensive investigation. It appears that there is not a single, simple explanation for heterosis. Instead, it is likely that heterosis arises in crosses between genetically distinct individuals as a result of a diversity of mechanisms. Heterosis generally results from the action of multiple loci, and different loci affect heterosis for different traits and in different hybrids. Hence, multigene models are likely to prove most informative for understanding heterosis. Complementation of allelic variation, as well as complementation of variation in gene content and gene expression patterns, is likely to be an important contributor to heterosis. Epigenetic variation has the potential to interact in hybrid genotypes via novel mechanisms. Several other intriguing hypotheses are also under investigation. In crops, heterosis must be considered within the context of the genomic impacts of prior selection for agronomic traits.
Collapse
Affiliation(s)
- Patrick S Schnable
- Center for Plant Genomics and Department of Agronomy, Iowa State University, Ames, IA 50011-3650, USA.
| | | |
Collapse
|
11
|
Kaeppler S. Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/682824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heterosis is the increase in vigor that is observed in progenies of matings of diverse individuals from different species, isolated populations, or selected strains within species or populations. Heterosis has been of immense economic value in agriculture and has important implications regarding the fitness and fecundity of individuals in natural populations. Genetic models based on complementation of deleterious alleles, especially in the context of linkage and epistasis, are consistent with many observed manifestations of heterosis. The search for the genes and alleles that underlie heterosis, as well as for broader allele-independent, genomewide mechanisms, has encompassed many species and systems. Common themes across these studies indicate that sequence diversity is necessary but not sufficient to produce heterotic phenotypes, and that the molecular pathways that produce heterosis involve chromatin modification, transcriptional control, translation and protein processing, and interactions between and within developmental and biochemical pathways. Taken together, there are many and diverse molecular mechanisms that translate DNA into phenotype, and it is the combination of all these mechanisms across many genes that produce heterosis in complex traits.
Collapse
Affiliation(s)
- Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|