Sugden D. Down-regulation of pinealocyte protein kinase C: effect on alpha 1-adrenergic potentiation of beta-adrenoceptor stimulation of cyclic AMP accumulation and induction of serotonin N-acetyltransferase activity.
J Neurochem 1991;
57:216-21. [PMID:
1675661 DOI:
10.1111/j.1471-4159.1991.tb02118.x]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of rat pinealocytes with 4 beta-phorbol 12,13-dibutyrate down-regulated protein kinase C (PKC) activity. Loss of activity was concentration-dependent (50% loss at 8 x 10(-7) M after 18 h of treatment) and time-dependent (50% loss after 2 h with 3 x 10(-6) M). Phenylephrine, an alpha 1-adrenergic agonist, and phorbol esters unable to activate PKC did not down-regulate the enzyme. alpha 1-Adrenergic amplification of beta-adrenergic stimulation of cyclic AMP accumulation, a response previously shown to be mediated by PKC activation, was reduced by only 50% in cells in which PKC activity was down-regulated by approximately 95%. These data suggest that there is not a simple proportional relationship between the degree of activation of pinealocyte PKC and the alpha 1-adrenergic amplification of beta-adrenergic cyclic AMP synthesis. In down-regulated cells, alpha 1-adrenergic amplification of beta-adrenergic induction of serotonin N-acetyltransferase activity, a key cyclic AMP-responsive enzyme involved in the nocturnal synthesis of the pineal hormone melatonin, was unchanged. Thus, even though alpha 1-adrenergic amplification of cyclic AMP synthesis is impaired, sufficient cyclic AMP is generated to allow a full induction of serotonin N-acetyltransferase activity. This finding raises the important question of whether the alpha 1-adrenergic amplification mechanism has a physiological role in regulating melatonin synthesis in vivo.
Collapse