1
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
3
|
Erben L, Welday JP, Murphy R, Buonanno A. Toxic and Phenotypic Effects of AAV_Cre Used to Transduce Mesencephalic Dopaminergic Neurons. Int J Mol Sci 2022; 23:9462. [PMID: 36012727 PMCID: PMC9408874 DOI: 10.3390/ijms23169462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A popular approach to spatiotemporally target genes using the loxP/Cre recombination system is stereotaxic microinjection of adeno-associated virus (AAV) expressing Cre recombinase (AAV_Cre) in specific neuronal structures. Here, we report that AAV_Cre microinjection in the ventral tegmental area (VTA) of ErbB4 Cyt-1-floxed (ErbB4 Cyt-1fl/fl) mice at titers commonly used in the literature (~1012-1013 GC/mL) can have neurotoxic effects on dopaminergic neurons and elicit behavioral abnormalities. However, these effects of AAV_Cre microinjection are independent of ErbB4 Cyt-1 recombination because they are also observed in microinjected wild-type (WT) controls. Mice microinjected with AAV_Cre (1012-1013 GC/mL) exhibit reductions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression, loss of dopaminergic neurons, and they behaviorally become hyperactive, fail to habituate in the open field and exhibit sensorimotor gating deficits compared to controls microinjected with AAV_GFP. Importantly, these AAV_Cre non-specific effects are: (1) independent of serotype, (2) occur with vectors expressing either Cre or Cre-GFP fusion protein and (3) preventable by reducing viral titers by 1000-fold (1010 GC/mL), which retains sufficient recombination activity to target floxed genes. Our studies emphasize the importance of including AAV_Cre-injected WT controls in experiments because recombination-independent effects on gene expression, neurotoxicity and behaviors could be erroneously attributed to consequences of gene ablation.
Collapse
Affiliation(s)
| | | | | | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Cui W, Gao N, Dong Z, Shen C, Zhang H, Luo B, Chen P, Comoletti D, Jing H, Wang H, Robinson H, Xiong WC, Mei L. In trans neuregulin3-Caspr3 interaction controls DA axonal bassoon cluster development. Curr Biol 2021; 31:3330-3342.e7. [PMID: 34143959 DOI: 10.1016/j.cub.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023]
Abstract
Dopamine (DA) transmission is critical to motivation, movement, and emotion. Unlike glutamatergic and GABAergic synapses, the development of DA synapses is less understood. We show that bassoon (BSN) clusters along DA axons in the core of nucleus accumbens (NAcc) were increased in neonatal stages and reduced afterward, suggesting DA synapse elimination. Remarkably, DA neuron-specific ablating neuregulin 3 (NRG3), a protein whose levels correlate with BSN clusters, increased the clusters and impaired DA release and behaviors related to DA transmission. An unbiased screen of transmembrane proteins with the extracellular domain (ECD) of NRG3 identified Caspr3 (contactin associate-like protein 3) as a binding partner. Caspr3 was enriched in striatal medium spiny neurons (MSNs). NRG3 and Caspr3 interact in trans, which was blocked by Caspr3-ECD. Caspr3 null mice displayed phenotypes similar to those in DAT-Nrg3f/f mice in DA axonal BSN clusters and DA transmission. Finally, in vivo disruption of the NRG3-Caspr3 interaction increased BSN clusters. Together, these results demonstrate that DA synapse development is controlled by trans interaction between NRG3 in DA neurons and Caspr3 in MSNs, identifying a novel pair of cell adhesion molecules for brain circuit wiring.
Collapse
Affiliation(s)
- Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Child Health Institute of New Jersey, and Departments of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
6
|
Ledonne A, Mercuri NB. mGluR1-Dependent Long Term Depression in Rodent Midbrain Dopamine Neurons Is Regulated by Neuregulin 1/ErbB Signaling. Front Mol Neurosci 2018; 11:346. [PMID: 30327588 PMCID: PMC6174199 DOI: 10.3389/fnmol.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/04/2018] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates that the neurotrophic factor Neuregulin 1 (NRG1) and its receptors, ErbB tyrosine kinases, modulate midbrain dopamine (DA) transmission. We have previously reported that NRG1/ErbB signaling is essential for proper metabotropic glutamate receptors 1 (mGluR1) functioning in midbrain DA neurons, thus the functional interaction between ErbB receptors and mGluR1 regulates neuronal excitation and in vivo striatal DA release. While it is widely recognized that mGluR1 play a pivotal role in long-term modifications of synaptic transmission in several brain areas, specific mGluR1-dependent forms of synaptic plasticity in substantia nigra pars compacta (SNpc) DA neurons have not been described yet. Here, first we aimed to detect and characterize mGluR1-dependent glutamatergic long-term depression (LTD) in SNpc DA neurons. Second, we tested the hypothesis that endogenous ErbB signaling, by affecting mGluR1, fine-tunes glutamatergic synaptic plasticity in DA cells. We found that either pharmacological or synaptic activation of mGluR1 causes an LTD of AMPAR-mediated transmission in SNpc DA neurons from mice and rat slices, which is reliant on endogenous NRG1/ErbB signaling. Indeed, LTD is counteracted by a broad spectrum ErbB inhibitor. Moreover, the intracellular injection of pan-ErbB- or ErbB2 inhibitors inside DA neurons reduces mGluR1-dependent LTD, suggesting an involvement of ErbB2/ErbB4-containing receptors. Interestingly, exogenous NRG1 fosters LTD expression during minimal mGluRI activation. These results enlarge our cognizance on mGluR1 relevance in the induction of a novel form of long-term synaptic plasticity in SNpc DA neurons and describe a new NRG1/ErbB-dependent mechanism shaping glutamatergic transmission in DA cells. This might have important implications either in DA-dependent behaviors and learning/memory processes or in DA-linked diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Skirzewski M, Karavanova I, Shamir A, Erben L, Garcia-Olivares J, Shin JH, Vullhorst D, Alvarez VA, Amara SG, Buonanno A. ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors. Mol Psychiatry 2018; 23:2227-2237. [PMID: 28727685 PMCID: PMC5775946 DOI: 10.1038/mp.2017.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Genetic variants of Neuregulin 1 (NRG1) and its neuronal tyrosine kinase receptor ErbB4 are associated with risk for schizophrenia, a neurodevelopmental disorder characterized by excitatory/inhibitory imbalance and dopamine (DA) dysfunction. To date, most ErbB4 studies have focused on GABAergic interneurons in the hippocampus and neocortex, particularly fast-spiking parvalbumin-positive (PV+) basket cells. However, NRG has also been shown to modulate DA levels, suggesting a role for ErbB4 signaling in dopaminergic neuron function. Here we report that ErbB4 in midbrain DAergic axonal projections regulates extracellular DA levels and relevant behaviors. Mice lacking ErbB4 in tyrosine hydroxylase-positive (TH+) neurons, but not in PV+ GABAergic interneurons, exhibit different regional imbalances of basal DA levels and fail to increase DA in response to local NRG1 infusion into the dorsal hippocampus, medial prefrontal cortex and dorsal striatum measured by reverse microdialysis. Using Lund Human Mesencephalic (LUHMES) cells, we show that NRG/ErbB signaling increases extracellular DA levels, at least in part, by reducing DA transporter (DAT)-dependent uptake. Interestingly, TH-Cre;ErbB4f/f mice manifest deficits in learning, spatial and working memory-related behaviors, but not in numerous other behaviors altered in PV-Cre;ErbB4f/f mice. Importantly, microinjection of a Cre-inducible ErbB4 virus (AAV-ErbB4.DIO) into the mesencephalon of TH-Cre;ErbB4f/f mice, which selectively restores ErbB4 expression in DAergic neurons, rescues DA dysfunction and ameliorates behavioral deficits. Our results indicate that direct NRG/ErbB4 signaling in DAergic axonal projections modulates DA homeostasis, and that NRG/ErbB4 signaling in both GABAergic interneurons and DA neurons contribute to the modulation of behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- M Skirzewski
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - I Karavanova
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - A Shamir
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - L Erben
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,0000 0001 2240 3300grid.10388.32Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - J Garcia-Olivares
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - J H Shin
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - D Vullhorst
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - V A Alvarez
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - S G Amara
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - A Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Shang K, Talmage DA, Karl T. Parent-of-origin effects on schizophrenia-relevant behaviours of type III neuregulin 1 mutant mice. Behav Brain Res 2017; 332:250-258. [DOI: 10.1016/j.bbr.2017.05.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022]
|
9
|
Namba H, Okubo T, Nawa H. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling. Sci Rep 2016; 6:22606. [PMID: 26935991 PMCID: PMC4776181 DOI: 10.1038/srep22606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Takeshi Okubo
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| |
Collapse
|
10
|
Depboylu C, Rösler TW, de Andrade A, Oertel WH, Höglinger GU. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. J Neurochem 2015; 133:590-7. [PMID: 25581060 DOI: 10.1111/jnc.13026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Previously, we demonstrated that systemically injected extracellular domain of neuregulin-1β1 (Nrg1β1), a nerve growth and differentiation factor, passes the blood-brain barrier and rescues dopaminergic neurons of substantia nigra in the 6-hydroxydopamine-mouse model of Parkinson's disease (PD). Here, we studied the effects of peripherally administered Nrg1β1 in another toxin-based mouse model of PD. For this purpose, (i) nigrostriatal pathway injury was induced by treatment of adult wild-type mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in acute and subchronic paradigms; and (ii) Nrg1β1 or saline (control) were administered 1 h before each MPTP injection. We found that Nrg1β1 significantly reduced the loss of nigral dopaminergic neurons in both intoxication paradigms (7 days post-injection). However, Nrg1β1 did not reverse MPTP-induced decrease in dopamine levels and dopaminergic fibers in the striatum. We also show that MPTP conversion to its toxic metabolite 1-methyl-4-phenylpyridinium as well as levels of dopamine transporter, mediating intracellular uptake of 1-methyl-4-phenylpyridinium, are unaffected by Nrg1β1. Finally, neuroprotective properties of Nrg1β1 on nigral dopaminergic neurons are specifically mediated by ErbB4 as revealed through the study of ErbB4 knockout mice. In conclusion, systemically administered Nrg1β1 protects midbrain dopaminergic neurons against this PD-related toxic insult. Thus, Nrg1β1 may have a benefit in the treatment of PD patients. Previously, we demonstrated that systemically administered neuregulin-1β1 (Nrg1β1) passes the blood-brain barrier, phosphorylates ErbB4 receptors and elevates dopamine (DA) levels in the nigrostriatal system of healthy mice. Nrg1β1 protects nigral DAergic neurons in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease (PD). Here, we show that Nrg1β1 rescues nigral DAergic neurons also against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced cell death. ErbB4 expression is essential for the neuroprotective effect of Nrg1β1 on midbrain DAergic neurons. Nrg1β1 might be beneficial in PD treatment.
Collapse
Affiliation(s)
- Candan Depboylu
- Department of Neurology, Philipps University, Marburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Iwakura Y, Nawa H. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease. Front Cell Neurosci 2013; 7:4. [PMID: 23408472 PMCID: PMC3570895 DOI: 10.3389/fncel.2013.00004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022] Open
Abstract
Ligands for ErbB1-4 receptor tyrosine kinases, such as epidermal growth factor (EGF) and neuregulins, regulate brain development and function. Thus, abnormalities in their signaling are implicated in the etiology or pathology of schizophrenia and Parkinson's disease. Among the ErbB receptors, ErbB1, and ErbB4 are expressed in dopamine and GABA neurons, while ErbB1, 2, and/or 3 are mainly present in oligodendrocytes, astrocytes, and their precursors. Thus, deficits in ErbB signaling might contribute to the neurological and psychiatric diseases stemming from these cell types. By incorporating the latest cancer molecular biology as well as our recent progress, we discuss signal cross talk between the ErbB1-4 subunits and their neurobiological functions in each cell type. The potential contribution of virus-derived cytokines (virokines) that mimic EGF and neuregulin-1 in brain diseases are also discussed.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | | |
Collapse
|
13
|
Depboylu C, Höllerhage M, Schnurrbusch S, Brundin P, Oertel WH, Schrattenholz A, Höglinger GU. Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain dopaminergic neurons in Parkinson disease. Neurosci Lett 2012; 531:209-14. [DOI: 10.1016/j.neulet.2012.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 02/03/2023]
|
14
|
Yin DM, Chen YJ, Sathyamurthy A, Xiong WC, Mei L. Synaptic dysfunction in schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:493-516. [PMID: 22351070 DOI: 10.1007/978-3-7091-0932-8_22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia alters basic brain processes of perception, emotion, and judgment to cause hallucinations, delusions, thought disorder, and cognitive deficits. Unlike neurodegeneration diseases that have irreversible neuronal degeneration and death, schizophrenia lacks agreeable pathological hallmarks, which makes it one of the least understood psychiatric disorders. With identification of schizophrenia susceptibility genes, recent studies have begun to shed light on underlying pathological mechanisms. Schizophrenia is believed to result from problems during neural development that lead to improper function of synaptic transmission and plasticity, and in agreement, many of the susceptibility genes encode proteins critical for neural development. Some, however, are also expressed at high levels in adult brain. Here, we will review evidence for altered neurotransmission at glutamatergic, GABAergic, dopaminergic, and cholinergic synapses in schizophrenia and discuss roles of susceptibility genes in neural development as well as in synaptic plasticity and how their malfunction may contribute to pathogenic mechanisms of schizophrenia. We propose that mouse models with precise temporal and spatial control of mutation or overexpression would be useful to delineate schizophrenia pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong-Min Yin
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
15
|
Neddens J, Buonanno A. Expression of the neuregulin receptor ErbB4 in the brain of the rhesus monkey (Macaca mulatta). PLoS One 2011; 6:e27337. [PMID: 22087295 PMCID: PMC3210802 DOI: 10.1371/journal.pone.0027337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/14/2011] [Indexed: 02/03/2023] Open
Abstract
We demonstrated recently that frontal cortical expression of the Neuregulin (NRG) receptor ErbB4 is restricted to interneurons in rodents, macaques, and humans. However, little is known about protein expression patterns in other areas of the brain. In situ hybridization studies have shown high ErbB4 mRNA levels in various subcortical areas, suggesting that ErbB4 is also expressed in cell types other than cortical interneurons. Here, using highly-specific monoclonal antibodies, we provide the first extensive report of ErbB4 protein expression throughout the cerebrum of primates. We show that ErbB4 immunoreactivity is high in association cortices, intermediate in sensory cortices, and relatively low in motor cortices. The overall immunoreactivity in the hippocampal formation is intermediate, but is high in a subset of interneurons. We detected the highest overall immunoreactivity in distinct locations of the ventral hypothalamus, medial habenula, intercalated nuclei of the amygdala and structures of the ventral forebrain, such as the islands of Calleja, olfactory tubercle and ventral pallidum, and medium expression in the reticular thalamic nucleus. While this pattern is generally consistent with ErbB4 mRNA expression data, further investigations are needed to identify the exact cellular and subcellular sources of mRNA and protein expression in these areas. In contrast to in situ hybridization in rodents, we detected only low levels of ErbB4-immunoreactivity in mesencephalic dopaminergic nuclei but a diffuse pattern of immunofluorescence that was medium in the dorsal striatum and high in the ventral forebrain, suggesting that most ErbB4 protein in dopaminergic neurons could be transported to axons. We conclude that the NRG-ErbB4 signaling pathway can potentially influence many functional systems throughout the brain of primates, and suggest that major sites of action are areas of the “corticolimbic” network. This interpretation is functionally consistent with the genetic association of NRG1 and ERBB4 with schizophrenia.
Collapse
Affiliation(s)
- Jörg Neddens
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
16
|
Do transmembrane domain neuregulin 1 mutant mice exhibit a reliable sensorimotor gating deficit? Behav Brain Res 2011; 223:336-41. [DOI: 10.1016/j.bbr.2011.04.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 04/30/2011] [Indexed: 01/11/2023]
|
17
|
Rösler TW, Depboylu C, Arias-Carrión O, Wozny W, Carlsson T, Höllerhage M, Oertel WH, Schrattenholz A, Höglinger GU. Biodistribution and brain permeability of the extracellular domain of neuregulin-1-β1. Neuropharmacology 2011; 61:1413-8. [PMID: 21903113 DOI: 10.1016/j.neuropharm.2011.08.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/26/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Neuregulin-1 (NRG1) belongs to a large family of growth and differentiation factors with a key role in the development and maintenance of the brain. Genetic association of NRG1 within brain disorders such as Alzheimer's disease, schizophrenia and neuroprotective properties of certain NRG1 isoforms have led to a variety of studies in corresponding disease models. In the present work, we investigated NRG1 with regard to its peripheral and central biodistribution after systemic application. We first-time radiolabeled the entire biologically active extracellular domain of NRG1 isotype-β1 (NRG1-β1 ECD; aa 2-246) with iodine-125 and administered it peripherally to healthy adult C57Bl6 mice. Blood kinetics and relative organ distribution of (125)I-labeled NRG1-β1 ECD were determined. The blood level of NRG1-β1 ECD peaked within the first hour after intraperitoneal (i.p.) application. The brain-blood ratios of (125)I-labeled NRG1-β1 ECD were time-dependently 150-370% higher compared to the brain impermeable control, (131)I-labeled bovine serum albumin. Autoradiographs of brain slices demonstrated that (125)I-labeled NRG1-β1 ECD accumulated in several regions of the brain e.g. frontal cortex, striatum and ventral midbrain containing the substantia nigra. In addition we found histochemical and biochemical evidence that phosphorylation of the NRG1 prototype receptor ErbB4 was increased in these regions after systemic application of NRG1-β1 ECD. Our data suggest that NRG1-β1 ECD passes the blood-brain barrier and activates cerebral ErbB4 receptors.
Collapse
Affiliation(s)
- Thomas W Rösler
- Experimental Neurology, Department of Neurology, Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carlsson T, Schindler FR, Höllerhage M, Depboylu C, Arias-Carrión O, Schnurrbusch S, Rösler TW, Wozny W, Schwall GP, Groebe K, Oertel WH, Brundin P, Schrattenholz A, Höglinger GU. Systemic administration of neuregulin-1β1 protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurochem 2011; 117:1066-74. [DOI: 10.1111/j.1471-4159.2011.07284.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tönges L, Ostendorf T, Lamballe F, Genestine M, Dono R, Koch JC, Bähr M, Maina F, Lingor P. Hepatocyte growth factor protects retinal ganglion cells by increasing neuronal survival and axonal regeneration in vitro and in vivo. J Neurochem 2011; 117:892-903. [PMID: 21443522 DOI: 10.1111/j.1471-4159.2011.07257.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, University Medicine Göttingen, R.-Koch-Strasse 40, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: implication in neurodevelopmental hypothesis for schizophrenia. Mol Psychiatry 2011; 16:307-20. [PMID: 20142818 DOI: 10.1038/mp.2010.10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuregulin-1 (NRG1) is implicated in the etiology or pathology of schizophrenia, although its biological roles in this illness are not fully understood. Human midbrain dopaminergic neurons highly express NRG1 receptors (ErbB4). To test its neuropathological role in the neurodevelopmental hypothesis of schizophrenia, we administered type-1 NRG1 protein to neonatal mice and evaluated the immediate and subsequent effects on dopaminergic neurons and their associated behaviors. Peripheral NRG1 administration activated midbrain ErbB4 and elevated the expression, phosphorylation and enzyme activity of tyrosine hydroxylase (TH), which ultimately increased dopamine levels. The hyperdopaminergic state was sustained in the medial prefrontal cortex after puberty. There were marked increases in dopaminergic terminals and TH levels. In agreement, higher amounts of dopamine were released from this brain region of NRG1-treated mice following high potassium stimulation. Furthermore, NRG1-treated mice exhibited behavioral impairments in prepulse inhibition, latent inhibition, social behaviors and hypersensitivity to methamphetamine. However, there were no gross abnormalities in brain structures or other phenotypic features of neurons and glial cells. Collectively, our findings provide novel insights into neurotrophic contribution of NRG1 to dopaminergic maldevelopment and schizophrenia pathogenesis.
Collapse
|
21
|
Banerjee A, MacDonald ML, Borgmann-Winter KE, Hahn CG. Neuregulin 1-erbB4 pathway in schizophrenia: From genes to an interactome. Brain Res Bull 2010; 83:132-9. [PMID: 20433909 PMCID: PMC5050041 DOI: 10.1016/j.brainresbull.2010.04.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 02/06/2023]
Abstract
Recently identified candidate susceptibility genes for schizophrenia are likely to play, important roles in the pathophysiology of the illness. It is also clear, however, that the etiologic, contribution of these genes is not only via their own functions but also through interactions with other, genes and environmental factors. Genetic, transgenic and postmortem brain studies support a, potential role for NRG1-erbB4 signaling in schizophrenia. Embedded in the results of these studies, however, are clues to the notion that NRG1-erbB4 signaling does not act alone but in conjunction with, other pathways. This article aims to re-evaluate the evidence for the role of neuregulin 1 (NRG1)-erbB4 signaling in schizophrenia by focusing on its interactions with other candidate susceptibility, pathways. In addition, we consider molecular substrates upon which the NRG1-erbB4 and other, candidate pathways converge contributing to susceptibility for the illness (schizophrenia interactome). Glutamatergic signaling can be an interesting candidate for schizophrenia interactome. Schizophrenia is associated with NMDA receptor hypofunction and moreover, several susceptibility genes for, schizophrenia converge on NMDA receptor signaling. These candidate genes influence NMDA receptor, signaling via diverse mechanisms, yet all eventually impact on protein composition of NMDA receptor, complexes. Likewise, the protein associations in the receptor complexes can themselves modulate, signaling molecules of candidate genes and their pathways. Therefore, protein-protein interactions in the NMDA receptor complexes can mediate reciprocal interactions between NMDA receptor function, and susceptibility candidate pathways including NRG1-erbB4 signaling and thus can be a, schizophrenia interactome.
Collapse
Affiliation(s)
- Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Mathew L. MacDonald
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-3403
| | | | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| |
Collapse
|
22
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
23
|
Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV, Vazdarjanova A, Xiong WC, Mei L. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2010; 107:1211-1216. [PMID: 20080551 PMCID: PMC2824309 DOI: 10.1073/pnas.0910302107] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neuregulin 1 (NRG1) is a trophic factor thought to play a role in neural development. Recent studies suggest that it may regulate neurotransmission, mechanisms of which remain elusive. Here we show that NRG1, via stimulating GABA release from interneurons, inhibits pyramidal neurons in the prefrontal cortex (PFC). Ablation of the NRG1 receptor ErbB4 in parvalbumin (PV)-positive interneurons prevented NRG1 from stimulating GABA release and from inhibiting pyramidal neurons. PV-ErbB4(-/-) mice exhibited schizophrenia-relevant phenotypes similar to those observed in NRG1 or ErbB4 null mutant mice, including hyperactivity, impaired working memory, and deficit in prepulse inhibition (PPI) that was ameliorated by diazepam, a GABA enhancer. These results indicate that NRG1 regulates the activity of pyramidal neurons by promoting GABA release from PV-positive interneurons, identifying a critical function of NRG1 in balancing brain activity. Because both NRG1 and ErbB4 are susceptibility genes of schizophrenia, our study provides insight into potential pathogenic mechanisms of schizophrenia and suggests that PV-ErbB4(-/-) mice may serve as a model in the study of this and relevant brain disorders.
Collapse
Affiliation(s)
- Lei Wen
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Yi-Sheng Lu
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Xin-Hong Zhu
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Xiao-Ming Li
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Ran-Sook Woo
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Yong-Jun Chen
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Dong-Min Yin
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Cary Lai
- Department of Psychological and Brain Sciences and Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405
| | | | - Almira Vazdarjanova
- Synapses and Cognitive Neuroscience Center and Department of Neurology, Medical College of Georgia, Augusta, GA 30912; and
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and Department of Neurology
| | - Lin Mei
- Institute of Molecular Medicine and Genetics and Department of Neurology
| |
Collapse
|
24
|
Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 2009; 29:12255-64. [PMID: 19793984 DOI: 10.1523/jneurosci.2454-09.2009] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NRG1 and ERBB4 have emerged as some of the most reproducible schizophrenia risk genes. Moreover, the Neuregulin (NRG)/ErbB4 signaling pathway has been implicated in dendritic spine morphogenesis, glutamatergic synaptic plasticity, and neural network control. However, despite much attention this pathway and its effects on pyramidal cells have received recently, the presence of ErbB4 in these cells is still controversial. As knowledge of the precise locus of receptor expression is crucial to delineating the mechanisms by which NRG signaling elicits its diverse physiological effects, we have undertaken a thorough analysis of ErbB4 distribution in the CA1 area of the rodent hippocampus using newly generated rabbit monoclonal antibodies and ErbB4-mutant mice as negative controls. We detected ErbB4 immunoreactivity in GABAergic interneurons but not in pyramidal neurons, a finding that was further corroborated by the lack of ErbB4 mRNA in electrophysiologically identified pyramidal neurons as determined by single-cell reverse transcription-PCR. Contrary to some previous reports, we also did not detect processed ErbB4 fragments or nuclear ErbB4 immunoreactivity. Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy revealed abundant ErbB4 expression in the somatodendritic compartment in which it accumulates at, and adjacent to, glutamatergic postsynaptic sites. In contrast, we found no evidence for presynaptic expression in cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals. Our findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and, furthermore, implicate ErbB4 as a selective marker for glutamatergic synapses on inhibitory interneurons.
Collapse
|
25
|
DICKERSON JW, HEMMERLE AM, NUMAN S, LUNDGREN KH, SEROOGY KB. Decreased expression of ErbB4 and tyrosine hydroxylase mRNA and protein in the ventral midbrain of aged rats. Neuroscience 2009; 163:482-9. [PMID: 19505538 PMCID: PMC2755587 DOI: 10.1016/j.neuroscience.2009.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Decreased availability or efficacy of neurotrophic factors may underlie an increased susceptibility of mesencephalic dopaminergic cells to age-related degeneration. Neuregulins (NRGs) are pleotrophic growth factors for many cell types, including mesencephalic dopamine cells in culture and in vivo. The functional NRG receptor ErbB4 is expressed by virtually all midbrain dopamine neurons. To determine if levels of the NRG receptor are maintained during aging in the dopaminergic ventral mesencephalon, expression of ErbB4 mRNA and protein was examined in young (3 months), middle-aged (18 months), and old (24-25 months) Brown Norway/Fischer 344 F1 rats. ErbB4 mRNA levels in the substantia nigra pars compacta (SNpc), but not the adjacent ventral tegmental area (VTA) or subtantia nigra pars lateralis (SNl), were significantly reduced in the middle-aged and old animals when compared to young rats. Protein expression of ErbB4 in the ventral midbrain was significantly decreased in the old rats when compared to the young rats. Expression of tyrosine hydroxylase (TH) mRNA levels was significantly reduced in the old rats when compared to young animals in the SNpc, but not in the VTA or SNI. TH protein levels in the ventral midbrain were also decreased in the old animals when compared to the young animals. These data demonstrate a progressive decline of ErbB4 expression, coinciding with a loss of the dopamine-synthesizing enzyme TH, in the ventral midbrain of aged rats, particularly in the SNpc. These findings may implicate a role for diminished NRG/ErbB4 trophic support in dopamine-related neurodegenerative disorders of aging such as Parkinson's disease.
Collapse
Affiliation(s)
- J. W. DICKERSON
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - A. M. HEMMERLE
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - S. NUMAN
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - K. H. LUNDGREN
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - K. B. SEROOGY
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
26
|
Zheng Y, Watakabe A, Takada M, Kakita A, Namba H, Takahashi H, Yamamori T, Nawa H. Expression of ErbB4 in substantia nigra dopamine neurons of monkeys and humans. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:701-6. [PMID: 19336245 DOI: 10.1016/j.pnpbp.2009.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/19/2022]
Abstract
Abnormal neuregulin-1 signaling through its receptor (ErbB4) might be associated with schizophrenia, although their neuropathological contribution remains controversial. To assess the role of neuregulin-1 in the dopamine hypothesis of schizophrenia, we used in situ hybridization and immunoblotting to investigate the cellular distribution of ErbB4 mRNA in the substantia nigra of Japanese monkeys (Macaca fuscata) and human postmortem brains. In both monkeys and humans, significant signal for ErbB4 mRNA was detected in substantia nigra dopamine neurons, which were identified by melanin deposits. The expression of ErbB4 mRNA in nigral dopamine neurons was confirmed with an independent RNA probe, as well as with combined tyrosine hydroxylase immunostaining. Immunoblotting appeared to support the observation of in situ hybridization. Immunoreactivity for ErbB4 protein was much more enriched in substantia nigra pars compacta containing dopamine neurons than in neighboring substantia nigra pars reticulata. These observations suggest that ErbB4 is expressed in the dopaminergic neurons of primate substantia nigra and ErbB4 abnormality might contribute to the dopaminergic pathology associated with schizophrenia or other brain diseases.
Collapse
Affiliation(s)
- Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abe Y, Namba H, Zheng Y, Nawa H. In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 2009; 161:95-110. [PMID: 19298847 DOI: 10.1016/j.neuroscience.2009.03.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Although epidermal growth factor (EGF) and neuregulin-1 are neurotrophic factors for mesencephalic dopaminergic neurons and implicated in schizophrenia, the cellular localization and developmental regulation of their receptors (ErbB1-4) remain to be characterized. Here we investigated the distributions of mRNA for ErbB1-4 in the midbrain of the developing mouse with in situ hybridization and immunohistochemistry. The expression of ErbB1 and ErbB2 mRNAs was relatively high at the perinatal stage and frequently colocalized with mRNA for S100beta and Olig2, markers for immature astrocytes or oligodendrocyte precursors. Modest signal for ErbB1 mRNA was also detected in a subset of dopaminergic neurons. ErbB3 mRNA was detectable at postnatal day 10, peaked at postnatal day 18, and colocalized with 2',3'-cyclic nucleotide 3'-phosphodiesterase, a marker for oligodendrocytes. In contrast, ErbB4 mRNA was exclusively localized in neurons throughout development. Almost all of ErbB4 mRNA-expressing cells (94%-96%) were positive for tyrosine hydroxylase in the substantia nigra pars compacta but 66%-78% in the ventral tegmental area and substantia nigra pars lateralis. Conversely, 92%-99% of tyrosine hydroxylase-positive cells expressed ErbB4 mRNA. The robust and restricted expression of ErbB4 mRNA in the midbrain dopaminergic neurons suggests that ErbB4 ligands, neuregulin-1 and other EGF-related molecules, contribute to development or maintenance of this neuronal population.
Collapse
Affiliation(s)
- Y Abe
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | |
Collapse
|
28
|
Smidt MP. Specific vulnerability of substantia nigra compacta neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:39-47. [PMID: 20411766 DOI: 10.1007/978-3-211-92660-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The specific loss of substantia nigra compacta (SNc) neurons in Parkinson's disease (PD) has been the main driving force in initiating research efforts to unravel the apparent SNc-specific vulnerability. Initially, metabolic constraints due to high dopamine turnover have been the main focus in the attempts to solve this issue. Recently, it has become clear that fundamental differences in the molecular signature are adding to the neuronal vulnerability and provide specific molecular dependencies. Here, the different processes that define the molecular background of SNc vulnerability are summarized.
Collapse
Affiliation(s)
- Marten P Smidt
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG Utrecht, The Netherlands.
| |
Collapse
|
29
|
Abstract
Schizophrenia is a highly debilitating mental disorder that affects approximately 1% of the general population, yet it continues to be poorly understood. Recent studies have identified variations in several genes that are associated with this disorder in diverse populations, including those that encode neuregulin 1 (NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.
Collapse
Affiliation(s)
- Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|
30
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
31
|
Abstract
Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Marten P Smidt
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3508 AB Utrecht [corrected] The Netherlands.
| | | |
Collapse
|
32
|
O'Tuathaigh CMP, Babovic D, O'Meara G, Clifford JJ, Croke DT, Waddington JL. Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 2007; 31:60-78. [PMID: 16782199 DOI: 10.1016/j.neubiorev.2006.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 01/25/2023]
Abstract
A wealth of evidence indicates that schizophrenia is heritable. However, the genetic mechanisms involved are poorly understood. Furthermore, it may be that genes conferring susceptibility interact with one another and with non-genetic factors to modulate risk status and/or the expression of symptoms. Genome-wide scanning and the mapping of several regions linked with risk for schizophrenia have led to the identification of several putative susceptibility genes including neuregulin-1 (NRG1), dysbindin (DTNBP1), regulator of G-protein signalling 4 (RGS4), catechol-o-methyltransferase (COMT), proline dehydrogenase (PRODH) and disrupted-in-schizophrenia 1 (DISC1). Genetic animal models involving targeted mutation via gene knockout or transgenesis have the potential to inform on the role of a given susceptibility gene on the development and behaviour of the whole organism and on whether disruption of gene function is associated with schizophrenia-related structural and functional deficits. This review focuses on data regarding the behavioural phenotype of mice mutant for schizophrenia susceptibility genes identified by positional candidate analysis and the study of chromosomal abnormalities. We also consider methodological issues that are likely to influence phenotypic effects, as well as the limitations associated with existing molecular techniques.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular & Cellular Therapeutics and Research Institute, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Gherbassi D, Simon HH. The engrailed transcription factors and the mesencephalic dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:47-55. [PMID: 17017508 DOI: 10.1007/978-3-211-45295-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The engrailed genes belong to a large family of homeobox transcription factors. They are found throughout the animal kingdom, are highly conserved in the DNA binding domain and have been investigated for more than half a century. In the murine genome, two engrailed genes exist, called Engrailed-1 and Engrailed-2. Here, we summarize the properties of the engrailed genes and their functions, such as conserved structures, cellular localisation, secretion and internalisation, transcription factor activity, potential target genes and review their role in the development of mesencephalic dopaminergic neurons. During early development, they take part in the regionalization event, which specifies the neuroepithelium that provides the precursor cells of the mesencephalic dopaminergic neurons with the necessary signals for their induction. Later in the post-mitotic neurons, the two transcription factors participate in their specification and are cell-autonomously required for their survival.
Collapse
Affiliation(s)
- D Gherbassi
- Department of Neuroanatomy, Interdisciplinary Center for Neuroscience, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
34
|
Forni PE, Scuoppo C, Imayoshi I, Taulli R, Dastrù W, Sala V, Betz UAK, Muzzi P, Martinuzzi D, Vercelli AE, Kageyama R, Ponzetto C. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci 2006; 26:9593-602. [PMID: 16971543 PMCID: PMC6674592 DOI: 10.1523/jneurosci.2815-06.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrocephalus is a common and variegated pathology often emerging in newborn children after genotoxic insults during pregnancy (Hicks and D'Amato, 1980). Cre recombinase is known to have possible toxic effects that can compromise normal cell cycle and survival. Here we show, by using three independent nestin Cre transgenic lines, that high levels of Cre recombinase expression into the nucleus of neuronal progenitors can compromise normal brain development. The transgenics analyzed are the nestin Cre Balancer (Bal1) line, expressing the Cre recombinase with a nuclear localization signal, and two nestin CreER(T2) (Cre recombinase fused with a truncated estrogen receptor) mice lines with different levels of expression of a hybrid CreER(T2) recombinase that translocates into the nucleus after tamoxifen treatment. All homozygous Bal1 nestin Cre embryos displayed reduced neuronal proliferation, increased aneuploidy and cell death, as well as defects in ependymal lining and lamination of the cortex, leading to microencephaly and to a form of communicating hydrocephalus. An essentially overlapping phenotype was observed in the two nestin CreER(T2) transgenic lines after tamoxifen mediated-CreER(T2) translocation into the nucleus. Neither tamoxifen-treated wild-type nor nestin CreER(T2) oil-treated control mice displayed these defects. These results indicate that some forms of hydrocephalus may derive from a defect in neuronal precursors proliferation. Furthermore, they underscore the potential risks for developmental studies of high levels of nuclear Cre in neurogenic cells.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Turin, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calera MR, Topley HL, Liao Y, Duling BR, Paul DL, Goodenough DA. Connexin43 is required for production of the aqueous humor in the murine eye. J Cell Sci 2006; 119:4510-9. [PMID: 17046998 DOI: 10.1242/jcs.03202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Connexin43 is a major component of the gap junctions between pigmented and non-pigmented cells of the double-layered epithelium in the ciliary body of the eye. We directly tested the hypothesis that gap junctions play a crucial role in the production of the aqueous humor by inactivating the GJA1 (connexin43) gene in the pigmented epithelium with cre-loxP technology. To accomplish this, we crossed a line expressing cre recombinase driven by the nestin promoter and a line with floxed connexin43 alleles. Resultant lines exhibited loss of connexin43 from the pigmented epithelium, iris, retinal pigment epithelium and the lens. We observed plasma proteins in the aqueous humor and pathological changes consistent with a loss of intraocular pressure. As the ciliary body is responsible for aqueous humor production, these data support the hypothesis that the gap junctions between pigmented and non-pigmented epithelium are necessary for production of the aqueous humor that is in turn required for the generation of normal intraocular pressure and nourishment of the postnatal lens. The loss of connexin43 expression in the iris correlated with a separation of the posterior pigmented epithelium from the anterior myoepithelium and with meiosis, possibly resulting from a loss of function of the dilator pupillae.
Collapse
Affiliation(s)
- Mónica R Calera
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
36
|
Jackson-Fisher AJ, Bellinger G, Shum E, Duong JK, Perkins AS, Gassmann M, Muller W, Kent Lloyd KC, Stern DF. Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene 2006; 25:5664-72. [PMID: 16652155 DOI: 10.1038/sj.onc.1209574] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The four members of the ErbB family of receptor tyrosine kinases are involved in development and tumorigenesis of the mammary gland. Whereas the epidermal growth factor receptor, ErbB2 and ErbB3 are positively associated with various cancers, clinical studies of ErbB4 in breast cancer are contradictory. Results from tissue culture analyses and some clinical studies suggested that ErbB4 is either a tumor suppressor or is a negative regulator of ErbB2-driven tumors. Neu-Cre-ErbB4(flox/null) mice in which ErbB4 was inactivated by Cre-lox-mediated recombination in the mammary gland developed MMTV-Neu-driven mammary tumors with a similar latency period to mice with one or two wild-type ErbB4 alleles. Moreover, there was no difference in the histologies of tumors that developed, nor in the propensity to form lung metastases. Taken together these results suggest that ErbB4 is not a potent, highly penetrant tumor suppressor, nor is it a factor in Neu-mediated tumorigenesis in this model.
Collapse
Affiliation(s)
- A J Jackson-Fisher
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jørgensen JR, Juliusson B, Henriksen KF, Hansen C, Knudsen S, Petersen TN, Blom N, Seiger A, Wahlberg LU. Identification of novel genes regulated in the developing human ventral mesencephalon. Exp Neurol 2006; 198:427-37. [PMID: 16473350 DOI: 10.1016/j.expneurol.2005.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/18/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
In the human embryo, from approximately 6 weeks gestational age (GA), dopaminergic (DA) neurons can be found in the ventral mesencephalon (VM). More specifically, the post-mitotic neurons are located in the ventral part of the tegmentum (VT), whereas no mature DA neurons are found in the neighboring dorsal part. We used Affymetrix HG-U133 GeneChip technology to compare genome-wide expression profiles of ventral and dorsal tegmentum from 8 weeks GA human embryos, in order to identify genes involved in specification, differentiation, and survival of mesencephalic DA (mDA) neurons. Known mDA marker genes including ALDH1A1, DAT1, VMAT2, TH, CALB1, NURR1, FOXA1, GIRK2, PITX3, RET, and DRD2 topped the list of 96 genes from HG-U133A with higher expression in VT, validating the experimental set-up. In addition, 28 probes from HG-U133B were identified whereof most are annotated to UniGene clusters with no gene associated or to genes of unknown function. Of these, the fifteen most regulated transcripts, representing changes down to 56% could be verified by quantitative real-time PCR (Q-PCR) on a developmental series of subdissected human embryonic and fetal brain material, resulting in not only a regional but also a temporal expression profile. This revealed a distinct DA-associated profile for in particular a putative transcription factor (FLJ45455) and the uncharacterized transmembrane proteins KIAA1145 and SLC10A4. The data presented here may help to device cell replacement and regenerative therapies for Parkinson's disease (PD).
Collapse
|
38
|
Abstract
Signaling via cell surface receptors that are anchored by a single transmembrane domain is a well-established paradigm. Ligand binding to the extracellular domain of the receptor facilitates receptor dimerization, which juxtaposes the intracellular domains, typically activating intrinsic or associated kinases. Two large families of tyrosine kinase activating receptors have been particularly well characterized: the receptor-type protein tyrosine kinases and the receptors for the alpha-helical cytokines, which activate non-covalently bound JAK family tyrosine kinases. Despite the well-established function of these receptors at the cell surface, both intact and cleaved receptors belonging to these families have been repeatedly detected in the nucleus. Furthermore, there is evidence that some of these receptors or receptor fragments function directly in modulating gene transcription. In this essay, I examine how close we are to demonstrating that direct translocation of receptors, or receptor fragments, from the cell surface to the nucleus is a physiologically relevant means of intracellular signaling that can supplant or complement canonical signaling cascades.
Collapse
Affiliation(s)
- John J Krolewski
- Department of Pathology and Laboratory Medicine, Chao Family Comprehensive Cancer Center, College of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|