1
|
Sato S, Kefalov VJ. Characterization of zebrafish rod and cone photoresponses. Sci Rep 2025; 15:13413. [PMID: 40251282 PMCID: PMC12008237 DOI: 10.1038/s41598-025-96058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Sato S, Kefalov V. Characterization of zebrafish rod and cone photoresponses. RESEARCH SQUARE 2025:rs.3.rs-5984163. [PMID: 40162217 PMCID: PMC11952657 DOI: 10.21203/rs.3.rs-5984163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
|
3
|
Hart NS, Pozo-Montoro M, Seeger O, Ryan LA, Tosetto L, Huveneers C, Peddemors VM, Williamson JE, Gaston TF. Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks. Mol Biol Evol 2025; 42:msaf043. [PMID: 39937658 PMCID: PMC11886822 DOI: 10.1093/molbev/msaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Color vision is widespread in marine vertebrates but is notably lacking in whales, dolphins, seals, and apparently also sharks. All sharks studied to date possess only a single spectral class of cone and are thus potentially totally color blind. The reason why sharks lack color vision is unclear, but as the visual pigments of only a handful of this large and ecologically diverse taxon have been studied, more data are required to address this question. Here, we assembled the retinal transcriptomes of 9 species from 7 families and 3 orders within the superorder Galeomorphii to screen for visual opsin and phototransduction genes. We reveal that cone monochromacy is widespread in galeomorph sharks, but the type of cone opsin expressed varies, with lamniform and orectolobiform sharks expressing a long-wavelength-sensitive (LWS) opsin, and carcharhiniform and heterodontiform sharks expressing a rhodopsin-like 2 (RH2) opsin. Cone monochromacy has evolved from a dichromatic ancestral state at least 4 times, implying strong selection pressure to prioritize achromatic over chromatic vision. While all species express the GRK1A and GRK7 isoforms of G protein-coupled receptor kinase, only sharks with the LWS cone opsin express the GRK1B isoform, which suggests that nonspectral functions of photoreception may have influenced, or result from, the opsin complement in the shark retina. Finally, we show that the shark rod (RH1) opsin gene shows evidence of positive selection at sites known to influence pigment kinetics (i.e. metarhodopsin II stability) and that the rate of retinal release likely differs substantially between species in ways that reflect their physiology and ecology.
Collapse
Affiliation(s)
- Nathan S Hart
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Maria Pozo-Montoro
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Olivia Seeger
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Louise Tosetto
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- Fisheries Research, New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Jane E Williamson
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales 2258, Australia
| |
Collapse
|
4
|
Shen B, Wada S, Sugihara T, Nagata T, Nishioka H, Kawano-Yamashita E, Ozawa T, Koyanagi M, Terakita A. Light intensity-dependent arrestin switching for inactivation of a light-sensitive GPCR, bistable opsin. iScience 2025; 28:111706. [PMID: 39925416 PMCID: PMC11803233 DOI: 10.1016/j.isci.2024.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Inactivation of most light-sensitive G protein-coupled receptor (GPCR) opsins involves arrestin binding to terminate cell responses. In the zebrafish pineal organ, UV sensitive parapinopsin 1 (PP1)-expressing cells exhibit color opponency through photoequilibria between two photo-interconvertible states of PP1. The amount of visible light-sensitive active states (photoproducts) is crucial for generating color opponency, raising questions about how and what arrestins are involved in PP1 inactivation. Here, we found two arrestins, Arr3a and Sagb competitively bind to PP1. Photoresponse analyses of the PP1 cells using gene-knockdown larvae revealed Arr3a-involved quick inactivation was switched to Sagb-involved moderate inactivation depending on increased light intensity. Furthermore, we found photoregeneration of PP1 facilitates the dissociation of the PP1-arrestin complex, allowing for continuous arrestin supply in the photoequilibria under strong light. These regulations for the active photoproduct amounts of PP1 may help maintain appropriate color opponency. The current findings provide insight into the dynamics of GPCR inactivation involving multiple arrestins.
Collapse
Affiliation(s)
- Baoguo Shen
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Seiji Wada
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tomohiro Sugihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Haruka Nishioka
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Emi Kawano-Yamashita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Qiu L, Yu P, Li Q, Wen C, Wang H, Zhao D, Zhang T, Wang C, Liu L, Li D, Wen S, Sun Y. Comparative the effect of bisphenol A and bisphenol S on the development and spectral sensitivity of cone photoreceptors in zebrafish larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117737. [PMID: 39826411 DOI: 10.1016/j.ecoenv.2025.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity. We also compared the mechanisms of color deficiency induced by BPA and BPS at the same concentrations. The results indicated that BPA (10 and 100 μg/L) caused the abnormal proliferation (increased number of cone cells), morphological abnormalities (increased height of cone cells), mosaic pattern disorder, and depressed expression of key genes related to the photo-transduction pathway, and impaired the light perception ability of both red and UV cones ultimately. Similar to the BPA exposure group, BPS (1, 10, and 100 μg/L) exposure resulted in structural damage and mosaic arrays disorder of red and UV cone photoreceptors. In contrast to BPA exposure, BPS exposure resulted in significant activation of key genes involved in the phototransduction pathway. Our data indicate that both BPS and BPA exposure can interfere with the development of cone cells, and two types of compounds disturb the transduction of photon signals within cone cells in different ways, which further impaired the retinal spectral sensitivity to the light signal. This study clarifies the root cause for color vision impairment induced by BPA from the perspective of cone-mediated color vision. It also clarified that the BPA and its substitute BPS may not be entirely safe at the single-cell level.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| | - Peng Yu
- Dezhou Hospital, Qilu Hospital of Shandong University, Dezhou 253023, China.
| | - Qiang Li
- Jinan Ecological Environment Digital Application Center Lixia Branch, Jinan 250014, China
| | - Cuiping Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Haiyang Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Dongying Zhao
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Tianyu Zhang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Lixia Liu
- Belgorod College of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Dongxue Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Shiyong Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Yinghui Sun
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| |
Collapse
|
6
|
Yang Z, Yan L, Zhang W, Qi J, An W, Yao K. Dyschromatopsia: a comprehensive analysis of mechanisms and cutting-edge treatments for color vision deficiency. Front Neurosci 2024; 18:1265630. [PMID: 38298913 PMCID: PMC10828017 DOI: 10.3389/fnins.2024.1265630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Color blindness is a retinal disease that mainly manifests as a color vision disorder, characterized by achromatopsia, red-green color blindness, and blue-yellow color blindness. With the development of technology and progress in theory, extensive research has been conducted on the genetic basis of color blindness, and various approaches have been explored for its treatment. This article aims to provide a comprehensive review of recent advances in understanding the pathological mechanism, clinical symptoms, and treatment options for color blindness. Additionally, we discuss the various treatment approaches that have been developed to address color blindness, including gene therapy, pharmacological interventions, and visual aids. Furthermore, we highlight the promising results from clinical trials of these treatments, as well as the ongoing challenges that must be addressed to achieve effective and long-lasting therapeutic outcomes. Overall, this review provides valuable insights into the current state of research on color blindness, with the intention of informing further investigation and development of effective treatments for this disease.
Collapse
Affiliation(s)
- Zihao Yang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhang SY, Gan X, Shen B, Jiang J, Shen H, Lei Y, Liang Q, Bai C, Huang C, Wu W, Guo Y, Song Y, Chen J. 6PPD and its metabolite 6PPDQ induce different developmental toxicities and phenotypes in embryonic zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131601. [PMID: 37182464 DOI: 10.1016/j.jhazmat.2023.131601] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The automobile tire antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite 6PPDQ have recently received much attention for their acute aquatic toxicity. The present study investigated the mechanistic developmental toxicity of 6PPD and 6PPDQ in embryonic zebrafish. Neither compound induced significant mortality but significantly decreased spontaneous embryo movement and heart rate. Both compounds induced malformations with different phenotypes; the 6PPD-exposed larvae manifested a myopia-like phenotype with a convex eyeball and fusion vessels, while the 6PPDQ-exposed embryonic zebrafish manifested enlarged intestine and blood-coagulated gut, activated neutrophils, and overexpressed enteric neurons. mRNA-Seq and quantitative real-time PCR assays showed that 6PPD- and 6PPDQ-induced distinct differential gene expression aligned with their toxic phenotype. 6PPD activated the retinoic acid metabolic gene cyp26a, but 6PPDQ activated adaptive cellular response to xenobiotics gene cyp1a. 6PPD suppressed the gene expression of the eye involved in retinoic acid metabolism, phototransduction, photoreceptor function and visual perception. In contrast, 6PPDQ perturbed genes involved in inward rectifier K+ and voltage-gated ion channels activities, K+ import across the plasma membrane, iron ion binding, and intestinal immune network for IgA production. The current study advances the present understanding the reason of why many fish species are so adversely impacted by 6PPD and 6PPDQ.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Baoguo Shen
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jian Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Huimin Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Jiangfei Chen
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
8
|
Chang J, Jiao M, Zhang Z, Liu W, Li W, Xu P, Wan B. Mechanistic insight into the adverse outcome of tire wear and road particle leachate exposure in zebrafish (Danio rerio) larvae. ENVIRONMENT INTERNATIONAL 2023; 178:108053. [PMID: 37356306 DOI: 10.1016/j.envint.2023.108053] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Tire wear particles (TWP) have become the major microplastic pollution in China. Road runoff containing TWP leachate can decrease the eye size and even induced mortality in the aquatic organisms. However, the toxic mechanism of TWP and road particles (RP) leachate on aquatic organisms is still unclear. In this study, the zebrafish embryos were exposed to TWP or RP leachate for 5 days at both environmental relevant and high concentrations. The adverse outcome pathways (AOPs) were screened from individual to molecular levels. The morphological and behavioral analysis demonstrated that the leachate exposure mainly impaired the eye development of zebrafish larvae and inhibited the larval swim behavior and phototactic response, which are the adverse outcomes. The phototransduction modulated by zebrafish retina was significantly down-regulated through transcriptomics and metabolomics analysis. The eye histopathological analysis showed that the decreased thickness of the retinal outer nuclear layer (ONL) and retinal pigmented epithelium (RPE) after leachate exposure were caused by the decreased photoreceptor cells. Moreover, the expression of NR2E3 and TPO genes showed concentration-dependent down-regulation after leachate exposure. The inhibition of photoreceptor cell proliferation was identified as the main reason for photoreceptor cell decrease in zebrafish larval eye. This study, for the first time, uncovered the underlying toxic mechanism of TWP and RP on zebrafish larval eyes.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Meng Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- Tongzhou Asphalt Factory, Beijing Municipal Road and Bridge Building Material Group Co. LTD, Beijing 101108, China
| | - Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
9
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
11
|
Shen C, Cai Y, Li J, He C, Zuo Z. Mepanipyrim induces visual developmental toxicity and vision-guided behavioral alteration in zebrafish larvae. J Environ Sci (China) 2023; 124:76-88. [PMID: 36182181 DOI: 10.1016/j.jes.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/16/2023]
Abstract
Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yimei Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Chrispell JD, Xiong Y, Weiss ER. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J Biol Chem 2022; 298:102636. [PMID: 36273582 PMCID: PMC9692042 DOI: 10.1016/j.jbc.2022.102636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.
Collapse
|
13
|
Zang J, Gesemann M, Keim J, Samardzija M, Grimm C, Neuhauss SCF. Circadian regulation of vertebrate cone photoreceptor function. eLife 2021; 10:e68903. [PMID: 34550876 PMCID: PMC8494479 DOI: 10.7554/elife.68903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.
Collapse
Affiliation(s)
- Jingjing Zang
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Matthias Gesemann
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Jennifer Keim
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Stephan CF Neuhauss
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| |
Collapse
|
14
|
Ahrens N, Aeissen E, Lippe A, Janssen-Bienhold U, Christoffers J, Koch KW. Farnesylation of Zebrafish G-Protein-Coupled Receptor Kinase Using Bio-orthogonal Labeling. ACS Chem Neurosci 2021; 12:1824-1832. [PMID: 33945258 DOI: 10.1021/acschemneuro.1c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors are deactivated or desensitized by phosphorylation by respective G-protein-coupled receptor kinases (GRKs). In zebrafish rod and cone photoreceptor cells, four orthologous GRKs are expressed participating in the deactivation of rod and cone opsins. An important feature of GRKs in general is the consensus sites for lipid modification, which would allow the posttranslational attachment of isoprenoids facilitating membrane association and enzymatic performance. Because direct proof is missing for isoprenoid modification of zebrafish GRKs, we used a semichemical approach to study the incorporation of a farnesyl moiety into a GRK and its cellular consequences. The approach involves organic synthesis of a functionalized farnesyl derivative that is suitable for a subsequent alkyne-azide cycloaddition (click reaction). For this purpose, zebrafish GRK was expressed in HEK293 cells and modified in situ with the synthetic farnesyl moiety. Successful farnesylation by an endogenous farnesyltransferase was detected by immunoblotting and immunocytochemistry using a biotin-streptavidin-coupled assay and ligation with a fluorescence dye, respectively. Immunocytochemical detection of farnesylated GRK in different cell compartments indicates the applicability of the approach for studying the transport of cellular components.
Collapse
Affiliation(s)
- Nicole Ahrens
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Enno Aeissen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Anka Lippe
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Division of Neurobiology, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
15
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
16
|
Shen B, Wada S, Nishioka H, Nagata T, Kawano-Yamashita E, Koyanagi M, Terakita A. Functional identification of an opsin kinase underlying inactivation of the pineal bistable opsin parapinopsin in zebrafish. ZOOLOGICAL LETTERS 2021; 7:1. [PMID: 33579376 PMCID: PMC7881645 DOI: 10.1186/s40851-021-00171-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In the pineal organ of zebrafish larvae, the bistable opsin parapinopsin alone generates color opponency between UV and visible light. Our previous study suggested that dark inactivation of the parapinopsin photoproduct, which activates G-proteins, is important for the regulation of the amount of the photoproduct. In turn, the photoproduct is responsible for visible light sensitivity in color opponency. Here, we found that an opsin kinase or a G-protein-coupled receptor kinase (GRK) is involved in inactivation of the active photoproduct of parapinopsin in the pineal photoreceptor cells of zebrafish larvae. We investigated inactivation of the photoproduct in the parapinopsin cells of various knockdown larvae by measuring the light responses of the cells using calcium imaging. We found that GRK7a knockdown slowed recovery of the response of parapinopsin photoreceptor cells, whereas GRK1b knockdown or GRK7b knockdown did not have a remarkable effect, suggesting that GRK7a, a cone-type GRK, is mainly responsible for inactivation of the parapinopsin photoproduct in zebrafish larvae. We also observed a similar knockdown effect on the response of the parapinopsin photoreceptor cells of mutant larvae expressing the opsin SWS1, a UV-sensitive cone opsin, instead of parapinopsin, suggesting that the parapinopsin photoproduct was inactivated in a way similar to that described for cone opsins. We confirmed the immunohistochemical distribution of GRK7a in parapinopsin photoreceptor cells by comparing the immunoreactivity to GRK7 in GRK7a-knockdown and control larvae. These findings suggest that in pineal photoreceptor cells, the cone opsin kinase GRK7a contributes greatly to the inactivation of parapinopsin, which underlies pineal color opponency.
Collapse
Affiliation(s)
- Baoguo Shen
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Seiji Wada
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Haruka Nishioka
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Emi Kawano-Yamashita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan.
| |
Collapse
|
17
|
Ahrens N, Elbers D, Greb H, Janssen-Bienhold U, Koch KW. Interaction of G protein-coupled receptor kinases and recoverin isoforms is determined by localization in zebrafish photoreceptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118946. [PMID: 33385424 DOI: 10.1016/j.bbamcr.2020.118946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The zebrafish retina expresses four recoverin genes (rcv1a, rcv1b, rcv2a and rcv2b) and four opsin kinase genes (grk1a, grk1b, grk7a and grk7b) coding for recoverin and G protein-coupled receptor kinase (opsin kinase) paralogs, respectively. Both protein groups are suggested to form regulatory complexes in rod and cone outer segments, but at present, we lack information about co-localization of recoverin and opsin kinases in zebrafish retinae and which protein-protein interacting pairs form. We analyzed the distribution and co-localization of recoverin and opsin kinase expression in the zebrafish retina. For this purpose, we used custom-tailored monospecific antibodies revealing that the amount of recoverin paralogs in a zebrafish retina can differ by more than one order of magnitude with the highest amount for recoverin 1a and 2b. Further, immunohistochemical labelling showed presence of recoverin 1a in all rod cell compartments, but it only co-localized with opsin kinase 1a in rod outer segments. In contrast, recoverin 2b was only detected in double cones and co-localized with opsin kinases 1b, 7a and 7b. Further, we investigated the interaction between recoverin and opsin kinase variants by surface plasmon resonance spectroscopy indicating interaction of recoverin 1a and recoverin 2b with all opsin kinases. However, binding kinetics for recoverin 1a differed from those observed with recoverin 2b that showed slower association and dissociation processes. Our results indicate diverse recoverin and opsin kinase properties due to differential expression and interaction profiles.
Collapse
Affiliation(s)
- Nicole Ahrens
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Dana Elbers
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Helena Greb
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Division of Neurobiology, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
18
|
Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J 2020; 34:2677-2690. [PMID: 31908030 PMCID: PMC7043924 DOI: 10.1096/fj.201902535r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
20
|
Lamb TD. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retin Eye Res 2019; 76:100823. [PMID: 31790748 DOI: 10.1016/j.preteyeres.2019.100823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
This paper reviews current knowledge of the evolution of the multiple genes encoding proteins that mediate the process of phototransduction in rod and cone photoreceptors of vertebrates. The approach primarily involves molecular phylogenetic analysis of phototransduction protein sequences, combined with analysis of the syntenic arrangement of the genes. At least 35 of these phototransduction genes appear to reside on no more than five paralogons - paralogous regions that each arose from a common ancestral region. Furthermore, it appears that such paralogs arose through quadruplication during the two rounds of genome duplication (2R WGD) that occurred in a chordate ancestor prior to the vertebrate radiation, probably around 600 millions years ago. For several components of the phototransduction cascade, it is shown that distinct isoforms already existed prior to WGD, with the likely implication that separate classes of scotopic and photopic photoreceptor cells had already evolved by that stage. The subsequent quadruplication of the entire genome then permitted the refinement of multiple distinct protein isoforms in rods and cones. A unified picture of the likely pattern and approximate timing of all the important gene duplications is synthesised, and the implications for our understanding of the evolution of rod and cone phototransduction are presented.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
21
|
Schott RK, Bhattacharyya N, Chang BS. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 2019; 73:1958-1971. [DOI: 10.1111/evo.13810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: Department of Vertebrate Zoology, National Museum of Natural HistorySmithsonian Institution 10th and Constitution Ave NW Washington DC 20560‐0162
| | - Nihar Bhattacharyya
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: UCL Institute of Ophthalmology 11–43 Bath Street London EC1V 9EL United Kingdom
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
22
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Lamb TD, Patel HR, Chuah A, Hunt DM. Evolution of the shut-off steps of vertebrate phototransduction. Open Biol 2019; 8:rsob.170232. [PMID: 29321241 PMCID: PMC5795056 DOI: 10.1098/rsob.170232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Different isoforms of the genes involved in phototransduction are expressed in vertebrate rod and cone photoreceptors, providing a unique example of parallel evolution via gene duplication. In this study, we determine the molecular phylogeny of the proteins underlying the shut-off steps of phototransduction in the agnathan and jawed vertebrate lineages. For the G-protein receptor kinases (GRKs), the GRK1 and GRK7 divisions arose prior to the divergence of tunicates, with further expansion during the two rounds of whole-genome duplication (2R); subsequently, jawed and agnathan vertebrates retained different subsets of three isoforms of GRK. For the arrestins, gene expansion occurred during 2R. Importantly, both for GRKs and arrestins, the respective rod isoforms did not emerge until the second round of 2R, just prior to the separation of jawed and agnathan vertebrates. For the triplet of proteins mediating shut-off of the G-protein transducin, RGS9 diverged from RGS11, probably at the second round of 2R, whereas Gβ5 and R9AP appear not to have undergone 2R expansion. Overall, our analysis provides a description of the duplications and losses of phototransduction shut-off genes that occurred during the transition from a chordate with only cone-like photoreceptors to an ancestral vertebrate with both cone- and rod-like photoreceptors.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - Aaron Chuah
- Genome Discovery Unit, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - David M Hunt
- The Lions Eye Institute, The University of Western Australia, Western Australia 6009, Australia.,School of Biological Sciences, The University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
24
|
Nandamuri SP, Conte MA, Carleton KL. Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics 2018; 19:945. [PMID: 30563463 PMCID: PMC6299527 DOI: 10.1186/s12864-018-5328-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background Dissecting the genetic basis of phenotypic diversity is one of the fundamental goals in evolutionary biology. Despite growing evidence for gene expression divergence being responsible for the evolution of complex traits, knowledge about the proximate genetic causes underlying these traits is still limited. African cichlids have diverse visual systems, with different species expressing different combinations of seven cone opsin genes. Using opsin expression variation in African cichlids as a model for gene expression evolution, this study aims to investigate the genetic architecture of opsin expression divergence in this group. Results Results from a genome-wide linkage mapping on the F2 progeny of an intergeneric cross, between two species with differential opsin expression show that opsins in Lake Malawi cichlids are controlled by multiple quantitative trait loci (QTLs). Most of these QTLs are located in trans to the opsins except for one cis-QTL for SWS1 on LG17. A closer look at this major QTL revealed the presence of a 691 bp deletion in the promoter of the SWS1 opsin (located 751 bp upstream of the start site) that is associated with a decrease in its expression. Phylogenetic footprinting indicates that the region spanning the deletion harbors a microRNA miR-729 and a conserved non-coding element (CNE) that also occurs in zebrafish and other teleosts. This suggests that the deletion might contain ancestrally preserved regulators that have been tuned for SWS1 gene expression in Lake Malawi. While this deletion is not common, it does occur in several other species within the lake. Conclusions Differential expression of cichlid opsins is associated with multiple overlapping QTL, with all but one in trans to the opsins they regulate. The one cis-acting factor is a deletion in the promoter of the SWS1 opsin, suggesting that ancestral polymorphic deletions may contribute to cichlid’s visual diversity. In addition to expanding our understanding of the molecular landscape of opsin expression in African cichlids, this study sheds light on the molecular mechanisms underlying phenotypic variation in natural populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA.
| |
Collapse
|
25
|
Chrispell JD, Dong E, Osawa S, Liu J, Cameron DJ, Weiss ER. Grk1b and Grk7a Both Contribute to the Recovery of the Isolated Cone Photoresponse in Larval Zebrafish. Invest Ophthalmol Vis Sci 2018; 59:5116-5124. [PMID: 30372740 PMCID: PMC6203174 DOI: 10.1167/iovs.18-24455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose To define the functional roles of Grk1 and Grk7 in zebrafish cones in vivo. Methods Genome editing was used to generate grk7a and grk1b knockout zebrafish. Electroretinogram (ERG) analyses of the isolated cone mass receptor potential and the b-wave were performed in dark-adapted zebrafish using a paired flash paradigm to determine recovery of cone photoreceptors and the inner retina after an initial flash. In addition, psychophysical visual response was measured using the optokinetic response (OKR). Results ERG analysis demonstrated that deletion of either Grk1b or Grk7a in zebrafish larvae resulted in modestly lower rates of recovery of the isolated cone mass receptor potential from an initial flash compared to wildtype larvae. On the other hand, grk1b-/- and grk7a-/- larvae exhibited a b-wave recovery that was similar to wildtype larvae. We evaluated the OKR and found that deletion of either Grk1b or Grk7a leads to a small decrease in temporal contrast sensitivity and alterations in visual acuity. Conclusions For the first time, we demonstrate that Grk1b and Grk7a both contribute to visual function in larval zebrafish cones. Since the difference between wildtype and each knockout fish is modest, it appears that either GRK is sufficient for adequate cone visual function.
Collapse
Affiliation(s)
- Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Enheng Dong
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - D. Joshua Cameron
- College of Optometry, Western University of Health Sciences, Pomona, California, United States
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
26
|
Elbers D, Scholten A, Koch KW. Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms. Front Mol Neurosci 2018; 11:355. [PMID: 30323742 PMCID: PMC6172410 DOI: 10.3389/fnmol.2018.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Primary steps in vertebrate vision occur in rod and cone cells of the retina and require precise molecular switches in excitation, recovery, and adaptation. In particular, recovery of the photoresponse and light adaptation processes are under control of neuronal Ca2+ sensor (NCS) proteins. Among them, the Ca2+ sensor recoverin undergoes a pronounced Ca2+-dependent conformational change, a prototypical so-called Ca2+-myristoyl switch, which allows selective targeting of G protein-coupled receptor kinase. Zebrafish (Danio rerio) has gained attention as a model organism in vision research. It expresses four different recoverin isoforms (zRec1a, zRec1b, zRec2a, and zRec2b) that are orthologs to the one known mammalian variant. The expression pattern of the four isoforms cover both rod and cone cells, but the differential distribution in cones points to versatile functions of recoverin in these cell types. Initial functional studies on zebrafish larvae indicate different Ca2+-sensitive working modes for zebrafish recoverins, but experimental evidence is lacking so far. The aims of the present study are (1) to measure specific Ca2+-sensing properties of the different recoverin isoforms, (2) to ask whether switch mechanisms triggered by Ca2+ resemble that one observed with mammalian recoverin, and (3) to investigate a possible impact of an attached myristoyl moiety. For addressing these questions, we employ fluorescence spectroscopy, surface plasmon resonance (SPR), dynamic light scattering, and equilibrium centrifugation. Exposure of hydrophobic amino acids, due to the myristoyl switch, differed among isoforms and depended also on the myristoylation state of the particular recoverin. Ca2+-induced rearrangement of the protein-water shell was for all variants less pronounced than for the bovine ortholog indicating either a modified Ca2+-myristoyl switch or no switch. Our results have implications for a step-by-step response of recoverin isoforms to changing intracellular Ca2+ during illumination.
Collapse
Affiliation(s)
- Dana Elbers
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
27
|
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep 2017; 7:16881. [PMID: 29203866 PMCID: PMC5715152 DOI: 10.1038/s41598-017-12838-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.
Collapse
|
28
|
Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodríguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJG, Larsen SD. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem 2017; 60:3052-3069. [PMID: 28323425 DOI: 10.1021/acs.jmedchem.7b00112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In heart failure, the β-adrenergic receptors (βARs) become desensitized and uncoupled from heterotrimeric G proteins. This process is initiated by G protein-coupled receptor kinases (GRKs), some of which are upregulated in the failing heart, making them desirable therapeutic targets. The selective serotonin reuptake inhibitor, paroxetine, was previously identified as a GRK2 inhibitor. Utilizing a structure-based drug design approach, we modified paroxetine to generate a small compound library. Included in this series is a highly potent and selective GRK2 inhibitor, 14as, with an IC50 of 30 nM against GRK2 and greater than 230-fold selectivity over other GRKs and kinases. Furthermore, 14as showed a 100-fold improvement in cardiomyocyte contractility assays over paroxetine and a plasma concentration higher than its IC50 for over 7 h. Three of these inhibitors, including 14as, were additionally crystallized in complex with GRK2 to give insights into the structural determinants of potency and selectivity of these inhibitors.
Collapse
Affiliation(s)
- Helen V Waldschmidt
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Kristoff T Homan
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Marilyn C Cato
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Osvaldo Cruz-Rodríguez
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Alessandro Cannavo
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Michael W Wilson
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Jianliang Song
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Joseph Y Cheung
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Walter J Koch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - John J G Tesmer
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Scott D Larsen
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
29
|
|
30
|
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 2016; 16:124. [PMID: 27296292 PMCID: PMC4906994 DOI: 10.1186/s12862-016-0695-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/01/2016] [Indexed: 02/25/2023] Open
Abstract
Background Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. Results We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Conclusions Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0695-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Ilkin E Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Joel Eggert
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Xesús M Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden.
| |
Collapse
|
31
|
Zang J, Keim J, Kastenhuber E, Gesemann M, Neuhauss SCF. Recoverin depletion accelerates cone photoresponse recovery. Open Biol 2016; 5:rsob.150086. [PMID: 26246494 PMCID: PMC4554923 DOI: 10.1098/rsob.150086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The neuronal Ca2+-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics.
Collapse
Affiliation(s)
- Jingjing Zang
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jennifer Keim
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Edda Kastenhuber
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
32
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
33
|
Lagman D, Callado-Pérez A, Franzén IE, Larhammar D, Abalo XM. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation. PLoS One 2015; 10:e0121330. [PMID: 25806532 PMCID: PMC4373759 DOI: 10.1371/journal.pone.0121330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amalia Callado-Pérez
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkin E. Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xesús M. Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
34
|
Crittenden F, Thomas H, Ethen CM, Wu ZL, Chen D, Kraft TW, Parant JM, Falany CN. Inhibition of SULT4A1 expression induces up-regulation of phototransduction gene expression in 72-hour postfertilization zebrafish larvae. Drug Metab Dispos 2014; 42:947-53. [PMID: 24553382 PMCID: PMC3989789 DOI: 10.1124/dmd.114.057042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.
Collapse
Affiliation(s)
- Frank Crittenden
- Departments of Pharmacology and Toxicology (F.C., H.T., J.P., C.N.F.), Medicine (D.C.), and Vision Sciences (T.K.), University of Alabama at Birmingham, Birmingham, Alabama; and R&D Systems, Minneapolis, Minnesota (C.M.E., Z.L.W.)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:1732-7. [PMID: 23319618 DOI: 10.1073/pnas.1214387110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration.
Collapse
|
36
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
38
|
Osawa S, Weiss ER. A tale of two kinases in rods and cones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:821-7. [PMID: 22183412 PMCID: PMC3632502 DOI: 10.1007/978-1-4614-0631-0_105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, CB# 7090, 108 Taylor Hall, Chapel Hill, NC 27599, USA
| | - Ellen R. Weiss
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, CB# 7090, 108 Taylor Hall, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| |
Collapse
|
39
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
40
|
Vogalis F, Shiraki T, Kojima D, Wada Y, Nishiwaki Y, Jarvinen JLP, Sugiyama J, Kawakami K, Masai I, Kawamura S, Fukada Y, Lamb TD. Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses. J Physiol 2011; 589:2321-48. [PMID: 21486791 DOI: 10.1113/jphysiol.2010.204156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the roles of G-protein receptor kinases (GRKs) in the light responses of vertebrate photoreceptors, we generated transgenic zebrafish lines, the rods of which express either cone GRK (GRK7) or rod GRK (GRK1) in addition to the endogenous GRK1, and we then measured the electrophysiological characteristics of single-cell responses and the behavioural responses of intact animals. Our study establishes the zebrafish expression system as a convenient platform for the investigation of specific components of the phototransduction cascade. The addition of GRK1 led to minor changes in rod responses. However, exogenous GRK7 in GRK7-tg animals led to lowered rod sensitivity, as occurs in cones, but surprisingly to slower response kinetics. Examination of responses to long series of very dim flashes suggested the possibility that the GRK7-tg rods generated two classes of single-photon response, perhaps corresponding to the interaction of activated rhodopsin with GRK1 (giving a standard response) or with GRK7(giving a very small response). Behavioural measurement of optokinetic responses (OKR) in intact GRK7-tg zebrafish larvae showed that the overall rod visual pathway was less sensitive, in accord with the lowered sensitivity of the rods. These results help provide an understanding for the molecular basis of the electrophysiological differences between cones and rods.
Collapse
Affiliation(s)
- F Vogalis
- Department of Neuroscience, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Haga T. [G protein-coupled receptor kinase (GRK)]. Nihon Yakurigaku Zasshi 2010; 136:215-218. [PMID: 20948157 DOI: 10.1254/fpj.136.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
42
|
Arinobu D, Tachibanaki S, Kawamura S. Larger inhibition of visual pigment kinase in cones than in rods. J Neurochem 2010; 115:259-68. [PMID: 20649847 DOI: 10.1111/j.1471-4159.2010.06925.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the carp retina, visual pigment kinase, GRK1 (G-protein coupled receptor kinase 1) in rods and GRK7 in cones, is inhibited by a photoreceptor neuronal Ca(2+)-sensor protein, S-modulin (or recoverin) in rods and visinin (formerly named s26) in cones. Here, we compared Ca(2+)-dependent inhibition of GRK1 by S-modulin and that of GRK7 by visinin. First, the concentrations of S-modulin and visinin in the outer segment were estimated: the concentration of visinin (1.2 mM) was 20 times higher than that of S-modulin (53 μM). Based on the determined concentrations of the Ca(2+)-sensor proteins and the known dark Ca(2+) concentrations, we estimated that in situ Ca(2+)-dependent inhibition on GRK in cones would be 2.5 times higher than that in rods at the Ca(2+) concentration in the dark. Because GRK activity is approximately 100 times higher in cones than in rods [Proc. Natl Acad. Sci. USA 102 (2005) 21359], the range of Ca(2+)-dependent inhibition on GRK activity is more than 100 times wider in cones than in rods. The inhibitory effects of S-modulin and visinin on photoreceptor GRKs were indistinguishable, although these Ca(2+)-sensor proteins are expressed in a cell-type specific manner. The inhibition by these Ca(2+)-sensor proteins was slightly higher on GRK7 than GRK1 probably because of a characteristic specific to GRK7.
Collapse
Affiliation(s)
- Daisuke Arinobu
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
43
|
Abstract
Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.
Collapse
Affiliation(s)
- Marie E Burns
- Departments of Ophthalmology and Vision Science, University of California, Davis, California, USA.
| | | |
Collapse
|
44
|
|
45
|
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2867-80. [PMID: 19720650 DOI: 10.1098/rstb.2009.0077] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed.
Collapse
Affiliation(s)
- Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
46
|
Jiang X, Yang P, Ma L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proc Natl Acad Sci U S A 2009; 106:10183-8. [PMID: 19502428 PMCID: PMC2700943 DOI: 10.1073/pnas.0812105106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are known as a family of serine/threonine kinases that function as key regulators of GPCRs, as well as other types of receptors. Extensive studies of GRKs at the cellular and organismal levels have led to a consensus that GRK-catalyzed phosphorylation of receptors is the primary mechanism underlying their physiological functions. Here, we report that down-regulation of GRK2 in zebrafish embryos with GRK2 morpholino results in developmental early arrest and, interestingly, that this arrest can be rescued by exogenous expression of a GRK2 kinase-dead mutant, K220R. A physical interaction between GRK2 and cyclin B1 regulator patched homolog 1 (PTCH1), stimulated by Hedgehog (Hh), rather than GRK2-mediated phosphorylation of downstream targets, appears as the underlying mechanism. We identify residues 262-379 as the PTCH1-binding region (BP). Interaction of GRK2, K220R, and BP with PTCH1 reduces the association of PTCH1 with cyclin B1 and disrupts PTCH1-mediated inhibition of cyclin B1 nuclear translocation, whereas the PTCH1-binding deficient GRK2 mutant (Delta312-379) does not. Cell cycle and cell proliferation assays show that overexpressing PTCH1 remarkably inhibited cell growth and this effect could be attenuated by GRK2, K220R, or BP, but not Delta312-379. In vivo studies show that BP, as well as the nuclear-localizing cyclin B1 mutant, is effective in rescuing the early arrest phenotype in GRK2 knockdown embryos, but Delta312-379 is not. Our data thus reveal a novel kinase activity-independent function for GRK and establish a role for GRK2 as a cell-cycle regulator during early embryonic development.
Collapse
Affiliation(s)
- Xi Jiang
- State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Peng Yang
- State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Osawa S, Jo R, Weiss ER. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem 2008; 107:1314-24. [PMID: 18803695 DOI: 10.1111/j.1471-4159.2008.05691.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.
Collapse
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
48
|
Wensel TG. Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 2008; 48:2052-61. [PMID: 18456304 PMCID: PMC2615670 DOI: 10.1016/j.visres.2008.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022]
Abstract
Signal transduction in outer segments of vertebrate photoreceptors is mediated by a series of reactions among multiple polypeptides that form protein-protein complexes within or on the surface of the disk and plasma membranes. The individual components in the activation reactions include the photon receptor rhodopsin and the products of its absorption of light, the three subunits of the G protein, transducin, the four subunits of the cGMP phosphodiesterase, PDE6 and the four subunits of the cGMP-gated cation channel. Recovery involves membrane complexes with additional polypeptides including the Na(+)/Ca(2+), K(+) exchanger, NCKX2, rhodopsin kinases RK1 and RK7, arrestin, guanylate cyclases, guanylate cyclase activating proteins, GCAP1 and GCAP2, and the GTPase accelerating complex of RGS9-1, G(beta5L), and membrane anchor R9AP. Modes of membrane binding by these polypeptides include transmembrane helices, fatty acyl or isoprenyl modifications, polar interactions with lipid head groups, non-polar interactions of hydrophobic side chains with lipid hydrocarbon phase, and both polar and non-polar protein-protein interactions. In the course of signal transduction, complexes among these polypeptides form and dissociate, and undergo structural rearrangements that are coupled to their interactions with and catalysis of reactions by small molecules and ions, including guanine nucleotides, ATP, Ca(2+), Mg(2+), and lipids. The substantial progress that has been made in understanding the composition and function of these complexes is reviewed, along with the more preliminary state of our understanding of the structures of these complexes and the challenges and opportunities that present themselves for deepening our understanding of these complexes, and how they work together to convert a light signal into an electrical signal.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Abstract
Retinal rods and cones, which are the front-end light detectors in the eye, achieve wonders together by being able to signal single-photon absorption and yet also able to adjust their function to brightness changes spanning 10(9)-fold. How these cells detect light is now quite well understood. Not surprising for almost any biological process, the intial step of seeing reveals a rich complexity as the probing goes deeper. The odyssey continues, but the knowledge gained so far is already nothing short of remarkable in qualitative and quantitative detail. It has also indirectly opened up the mystery of odorant sensing. Basic science aside, clinical ophthalmology has benefited tremendously from this endeavor as well. This article begins by recapitulating the key developments in this understanding from the mid-1960s to the late 1980s, during which period the advances were particularly rapid and fit for an intricate detective story. It then highlights some details discovered more recently, followed by a comparison between rods and cones.
Collapse
Affiliation(s)
- Dong-Gen Luo
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tian Xue
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - King-Wai Yau
- *Solomon H. Snyder Department of Neuroscience and
- Department of Ophthalmology and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
50
|
Abstract
Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|