1
|
Li B, Li J, Hao Y, Xie P, Yue S, Wang S, Zhang J, Zhang Y. Yuanzhi Powder inhibits tau pathology in SAMP8 mice: Mechanism research of a traditional Chinese formula against Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116393. [PMID: 37001766 DOI: 10.1016/j.jep.2023.116393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanzhi Powder (YZP), a classical Chinese medicine formula, is good at tonifying heart-Qi and improving cognitive ability. YZP has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY This study was conducted to observe the effects of YZP on improving the cognitive abilities of SAMP8 mice, and explore the involved mechanisms on inhibiting the excessive accumulation of phosphorylated tau. MATERIAL AND METHODS Thirty SAMP8 mice were randomly divided into five groups: AD group, AD + DO group, AD + YZP group, AD + LAC group and AD + LAC + YZP group. Age-matched SAMR1 mice were served as CTL group. AD + LAC group and AD + LAC + YZP group received 1 μg Lactacystin solution via intra-cerebroventricular injection. All mice (except the CTL group and AD + LAC group) were intragastrically administrated for 8 consecutive weeks. Then, the Morris Water Maze (MWM) test was conducted for evaluation of learning and memory abilities. The pathological changes of hippocampal CA1 were observed by Hematoxylin & eosin (H&E) staining. The expression of 26S proteasome in the hippocampus was measured by Western Blot (WB) and immunohistochemistry (IHC). The expressions of total tau (Tau5) and hyperphosphorylated tau (pS199, pT231 and pS396) were detected by WB. The aggregation of hyperphosphorylated tau and the binding ability of tau protein to microtubules were evaluated respectively by immunostaining and Thioflavin-S staining and double-label immunofluorescence. RESULTS SAMP8 mice showed serious cognitive impairment in behavioral tests. However, treatment of YZP significantly ameliorated the cognitive deficits of SAMP8 mice. The H&E staining suggested that YZP could protect against neuronal loss in SAMP8 mice. The IHC and WB results showed that YZP increases 26S proteasome expression in SAMP8 mice and 26S proteasome expression was effectively inhibited by Lactacystin. Meanwhile, The WB results demonstrated that YZP can inhibit the expression of hyperphosphorylated tau (pT231, pS396 and pS199). Furthermore, the immunostaining and Thioflavin-S staining and double-label immunofluorescence results indicated that YZP attenuates the excessive aggregation of hyperphosphorylated tau and enhances the binding ability of tau to stabilize microtubules in SAMP8 mice. CONCLUSIONS YZP could enhance cognitive performance and learning of AD, ameliorate tau pathology and significantly improve the binding ability of tau to microtubules, based potentially on inhibiting the excessive aggregation of hyperphosphorylated tau via the 26Sproteasome pathway but not necessarily the only one.
Collapse
Affiliation(s)
- Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Peijun Xie
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Shengnan Yue
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shaofeng Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yi Zhang
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Yang F, Zhao J, Chen G, Han H, Hu S, Wang N, Wang J, Chen Y, Zhou Z, Dai B, Hou Y, Liu Y. Design, synthesis, and evaluation of hydrazones as dual inhibitors of ryanodine receptors and acetylcholinesterases for Alzheimer's disease. Bioorg Chem 2023; 133:106432. [PMID: 36841050 DOI: 10.1016/j.bioorg.2023.106432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Alzheimer's disease (AD) implicates neuronal loss, plaque and neurofibrillary tangle formation, and disturbed neuronal Ca2+ homeostasis, which leads to severe dementia, memory loss, as well as thinking and behavioral perturbations that could ultimately lead to death. Calcium dysregulation and low acetylcholine levels are two main mechanisms implicated in Alzheimer's disease progression. Simultaneous inhibition of calcium oscillations (store overload-induced Ca2+ release [SOICR]) and acetylcholinesterase (AChE) by a single molecule may bring a new breath of hope for AD treatment. Here, we described some dantrolene derivatives as dual inhibitors of the ryanodine receptor and AChE. Two series of acylhydrazone/sulfonylhydrazone derivatives with aromaticgroup were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit SOICR and AChE in vitro, using dantrolene and donepezil as positive controls. Compound 22a exhibited excellent and balanced inhibitory potency against SOICR (inhibition (%) = 90.1, IC50 = 0.162 μM) and AChE (inhibition (%) = 93.5, IC50 = 0.372 μM). Docking simulations showed that several preferred compounds could bind to the active sites of both the proteins, further validating the rationality of the design strategy. Potential therapeutic effects in AD were evaluated using the Barnes maze and Morris water maze tests, which demonstrated that compound 22a significantly improved memory and cognitive behavior in AD model mice. Moreover, it was also found that compound 22a could enhance synaptic strength by measuring hippocampal long-term potentiation (LTP) in brain slices. These results suggested that the introduction of a sulfonyl-hydrazone scaffold and aromatic substitution to dantrolene derivatives provided a useful template for the development of potential chemical entities against AD.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jiangang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Guang Chen
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Hao Han
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Shuang Hu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Ningwei Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Junqin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yuzhen Chen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Zihao Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Baozhu Dai
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid Cascade Hypothesis for the Treatment of Alzheimer's Disease: Progress and Challenges. Aging Dis 2022; 13:1745-1758. [PMID: 36465173 PMCID: PMC9662281 DOI: 10.14336/ad.2022.0412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 07/29/2023] Open
Abstract
The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of β-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Senze Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nina Fu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenhao Mou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Menglu Ye
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Design, synthesis, and biological activity of novel semicarbazones as potent Ryanodine receptor1 inhibitors of Alzheimer’s disease. Bioorg Med Chem 2021; 29:115891. [DOI: 10.1016/j.bmc.2020.115891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
|
5
|
Gao G, He J, Luo Y, Sun Y, Zhou Y, Zhang J, Xing Y, Dai J. Axonopathy Likely Initiates Neuropathological Processes Via a Mechanism of Axonal Leakage in Alzheimer's Mouse Models. Curr Mol Med 2020; 19:183-195. [PMID: 30961496 DOI: 10.2174/1566524019666190405174908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The formation of hyperphosphorylated tau and the production of β-amyloid are thought to be critical steps contributing to the pathological mechanisms in Alzheimer's disease (AD). However, there has been a long-lasting debate over their importance in the onset of AD. Recent studies have demonstrated that axonopathy is considered as an early neuropathological change of AD. However, the exact relationship between the development of axonopathy and the classic neuropathological changes such as senile plaques (SPs) and neurofibrillary tangles (NFTs) is unclear. OBJECTIVE The aim of this study was to investigate whether the formation of SPs and NFTs is associated with the development of axonal leakage. METHOD AND RESULTS Here we show that the formation and development of axonal leakage - a novel axonopathy is an age-dependent process, accompanied by swellings of axons and varicosities and associated with chronic oxidative stress induced by thiamine deficient (TD) diet in Kunming mice. In an APP/PS1 transgenic mouse model of AD, axonal leakage appears at 3 months, becomes more obvious at 6 months and severe, beyond 1 year. We also show that slight axonal leakage is related to the formation of hyperphosphorylated tau, but not plaques, and that only severe axonal leakage accompanied by the extensive swollen axons and varicosities, and overproduction of β-amyloid leads to the formation of SPs and hyperphosphorylated tau. CONCLUSION These data provide an explanation of the common origin and development of SPs and NFTs, and suggest that axonal leakage might be a key event in the development of the neuropathological processes in AD.
Collapse
Affiliation(s)
- Ge Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Clinical Laboratory of the Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Luo
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Clinical Laboratory of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,The College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Yanping Zhou
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,Department of Pathophysiology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Junxia Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Anatomy, Histology and Embryology, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ying Xing
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China.,The College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| |
Collapse
|
6
|
Abstract
Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer's disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Fazeli Z, Ghaderian SMH, Najmabadi H, Omrani MD. High expression of miR-510 was associated with CGG expansion located at upstream of FMR1 into full mutation. J Cell Biochem 2019; 120:1916-1923. [PMID: 30160796 DOI: 10.1002/jcb.27505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) have been found to play an important role in the regulation of gene expression in eukaryotic organisms at the posttranscriptional level. More than half of miRNA genes have been recognized to be located in different fragile sites. Among them, miR-510 was located on chromosome X in the 27.3Xq region, flanking to a fragile X site. The CGG expansion and its methylation at the promoter of FMR1 located in this fragile site were associated with clinical symptoms of fragile X syndrome (FXS). The aim of the current study was to investigate whether the miR-510 expression was correlated with the CGG expansion of FMR1 in female carriers of full mutation. For this purpose, mesenchymal stem cells were isolated from peripheral blood of FMR1 full mutation female carriers. After differentiation of these cells into neuronal cells, the expression of miR-510 was analyzed by quantitative polymerase chain reaction. Furthermore, the target genes of miR-510 in the nervous system were also predicted by in silico method. The obtained results indicated that the CGG expansion of FMR1 was associated with the enhanced expression of miR-510. Furthermore, the bioinformatics analysis suggested that VHL and PPP2R5E genes could be considered as the most important target genes of miR-510 in the nervous system. This study showed that miR-510 and its target genes, specifically VHL and PPP2R5E, may represent the new targets for future therapy options of FXS.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lee S, Youn K, Kim DH, Ahn MR, Yoon E, Kim OY, Jun M. Anti-Neuroinflammatory Property of Phlorotannins from Ecklonia cava on Aβ 25-35-Induced Damage in PC12 Cells. Mar Drugs 2018; 17:E7. [PMID: 30583515 PMCID: PMC6356621 DOI: 10.3390/md17010007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by excessive accumulation of amyloid-beta peptide (Aβ) and progressive loss of neurons. Therefore, the inhibition of Aβ-induced neurotoxicity is a potential therapeutic approach for the treatment of AD. Ecklonia cava is an edible brown seaweed, which has been recognized as a rich source of bioactive derivatives, mainly phlorotannins. In this study, phlorotannins including eckol, dieckol, 8,8'-bieckol were used as potential neuroprotective candidates for their anti-apoptotic and anti-inflammatory effects against Aβ25-35-induced damage in PC12 cells. Among the tested compounds, dieckol showed the highest effect in both suppressing intracellular oxidative stress and mitochondrial dysfunction and activation of caspase family. Three phlorotannins were found to inhibit TNF-α, IL-1β and PGE₂ production at the protein levels. These result showed that the anti-inflammatory properties of our compounds are related to the down-regulation of proinflammatory enzymes, iNOS and COX-2, through the negative regulation of the NF-κB pathway in Aβ25-35-stimulated PC12 cells. Especially, dieckol showed the strong anti-inflammatory effects via suppression of p38, ERK and JNK. However, 8,8'-bieckol markedly decreased the phosphorylation of p38 and JNK and eckol suppressed the activation of p38. Therefore, the results of this study indicated that dieckol from E. cava might be applied as a drug candidate for the development of new generation therapeutic agents against AD.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Kumju Youn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Eunju Yoon
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Oh-Yoen Kim
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
9
|
Huang XB, Chen YJ, Chen WQ, Wang NQ, Wu XL, Liu Y. Neuroprotective effects of tenuigenin on neurobehavior, oxidative stress, and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats. Brain Circ 2018; 4:24-32. [PMID: 30276333 PMCID: PMC6057698 DOI: 10.4103/bc.bc_2_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 11/16/2017] [Accepted: 11/25/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND: Tenuigenin (TEN), a major active component of the Chinese herb Polygala tenuifolia root, has been used to improve memory and cognitive function in Traditional Chinese Medicine for centuries. PURPOSE: The present study was designed to explore the possible neuroprotective effect of TEN on the streptozotocin (STZ)-induced rat model of sporadic Alzheimer's disease (sAD). METHODS: STZ was injected twice intracerebroventrically (3 mg/kg, ICV) on alternate days (day 1 and day 3) in Rats. Daily treatment with TEN (2, 4, and 8 mg/kg) starting from the first dose of STZ for 28 days. Memory-related behaviors were evaluated using the Morris water maze test. Hyperphosphorylation of tau proteins in hippocampus were measured by western blot assay. Superoxide dismutase activities, malondialdehyde, glutathione peroxidase and 4-hydroxy-2-nonenal adducts contents were also measured in the hippocampus. RESULTS: Treatment with TEN significantly improved STZ-induced cognitive damage, markedly reduced changes in malondialdehyde and 4-hydroxy-2-nonenal adducts, and significantly inhibited STZ-induced reduction in superoxide dismutase and glutathione peroxidase activities in the hippocampus. In addition, TEN decreased hyperphosphorylation of tau resulting from intracerebroventricular STZ (ICV-STZ) injection, and Nissl staining results showed that TEN has protective effects on hippocampal neurons. CONCLUSION: These results provide experimental evidence demonstrating preventive effect of TEN on cognitive dysfunction, oxidative stress, and hyperphosphorylation of tau in ICV-STZ rats. This study indicates that TEN may have beneficial effects in the treatment of neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Xiao-Bo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Yu-Jing Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Wen-Qiang Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Ning-Qun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xi-Ling Wu
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| |
Collapse
|
10
|
Fang L, Wang Y, Zheng Q, Yang T, Zhao P, Zhao H, Zhang Q, Zhao Y, Qi F, Li K, Chen Z, Li J, Zhang N, Fan Y, Wang L. Effects of Bu Shen Yi sui capsule on NogoA/NgR and its signaling pathways RhoA/ROCK in mice with experimental autoimmune encephalomyelitis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:346. [PMID: 28668079 PMCID: PMC5494129 DOI: 10.1186/s12906-017-1847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 11/11/2022]
Abstract
Background Axon growth inhibitory factors NogoA/Nogo receptor (NgR) and its signaling pathways RhoA/Rho kinase (ROCK) play a critical role in the repair of nerve damage in multiple sclerosis (MS). Bu Shen Yi Sui Capsule (BSYSC) is an effective Chinese formula utilized to treat MS in clinical setting and noted for its potent neuroprotective effects. In this study, we focus on the effects of BSYSC on promoting nerve repair and the underlying mechanisms in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methods The EAE mouse model was induced by injecting subcutaneously with myelin oligodendrocyte glycoprotein (MOG) 35–55 supplemented with pertussis toxin. BSYSC was orally administrated at dose of 3.0 g/kg once a day for 40 days. The levels of protein gene product (PGP) 9.5, p-Tau, growth associated protein (GAP) -43, KI67 and Nestin in the brain or spinal cord on 20 and 40 day post-induction (dpi) were detected via immunofluorescence and Western blot analysis. Furthermore, NogoA/NgR and RhoA/ROCK signaling molecules were studied by qRT-PCR and Western blot analysis. Results Twenty or 40 days of treatment with BSYSC increased markedly PGP9.5 and GAP-43 levels, reduced p-Tau in the brain or spinal cord of mice with EAE. In addition, BSYSC elevated significantly the expression of KI67 and Nestin in the spinal cord 40 dpi. Further study showed that the activation of NogoA/NgR and RhoA/ROCK were suppressed by the presence of BSYSC. Conclusions BSYSC could attenuate axonal injury and promote repair of axonal damage in EAE mice in part through the down-regulation of NogoA/NgR and RhoA/ROCK signaling pathways.
Collapse
|
11
|
Abstract
Tau belongs to the family of microtubule-associated proteins predominantly expressed in neurons where they play an important role in promoting microtubule assembly and stabilizing microtubules. In addition, tau proteins interact with other cytoskeletal elements to allow spacing between microtubules. Recent studies have shown that tau is also actively involved in regulating cell viability and activity. Translated from a single gene located on chromosome 17q21, six isoforms of tau are produced by alternative splicing in adult human brain. Due to multiple post-translational modifications, heterogeneous tau species with a wide range of apparent molecular masses have been observed by denaturing polyacrylamide-gel electrophoresis. Since tau gene mutations and abnormal post-translational modifications have been detected in over 20 neurodegenerative disorders, namely the tauopathies, tau has gained widespread attention as a target protein in Alzheimer's disease and other neurodegenerative disorders. In the present chapter, research progress regarding physiology and pathology of tau is reviewed, particularly in terms of the role of post-translational modification.
Collapse
|
12
|
Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS One 2014; 9:e93974. [PMID: 24713870 PMCID: PMC3979860 DOI: 10.1371/journal.pone.0093974] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD.
Collapse
|
13
|
Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer's disease. Neurosci Bull 2014; 30:359-66. [PMID: 24627329 DOI: 10.1007/s12264-013-1415-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Since abnormal post-translational modifications or gene mutations of tau have been detected in over twenty neurodegenerative disorders, tau has attracted widespread interest as a target protein. Among its various post-translational modifications, phosphorylation is the most extensively studied. It is recognized that tau hyperphosphorylation is the root cause of neurodegeneration in Alzheimer's disease (AD); however, it is not clear how it causes neurodegeneration. Based on the findings that tau hyperphosphorylation leads to the escape of neurons from acute apoptosis and simultaneously impairs the function of neurons, we have proposed that the nature of AD neurodegeneration is the consequence of aborted apoptosis induced by tau phosphorylation. Therefore, proper manipulation of tau hyperphosphorylation could be promising for arresting AD neurodegeneration. In this review, the neuroprotective and neurodegenerative effects of tau hyperphosphorylation and our thoughts regarding their relationship are presented.
Collapse
|
14
|
Yang C, Guo X, Wang GH, Wang HL, Liu ZC, Liu H, Zhu ZX, Li Y. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress. ACTA ACUST UNITED AC 2014; 47:237-44. [PMID: 24652321 PMCID: PMC3982945 DOI: 10.1590/1414-431x20133275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/08/2013] [Indexed: 11/21/2022]
Abstract
Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimer's disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.
Collapse
Affiliation(s)
- C Yang
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - X Guo
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - G H Wang
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - H L Wang
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Z C Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - H Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Z X Zhu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Y Li
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats. Neurotoxicology 2013; 38:136-45. [PMID: 23932983 DOI: 10.1016/j.neuro.2013.07.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022]
Abstract
Oxidative stress is implicated as an important factor in the development of Alzheimer's disease (AD). In the present study, we have investigated the effects of edaravone (9mg/kg, 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, in a streptozotocin (STZ-3mg/kg) induced rat model of sporadic AD (sAD). Treatment with edaravone significantly improved STZ-induced cognitive damage as evaluated in Morris water maze and step-down tests and markedly restored changes in malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) adducts, hydroxyl radical (OH), hydrogen peroxide (H2O2), total superoxide dismutase (T-SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and protein carbonyl (PC) levels. In addition, histomorphological observations confirmed the protective effect of edaravone on neuronal degeneration. Moreover, hyperphosphorylation of tau resulting from intracerebroventricular streptozotocin (ICV-STZ) injection was decreased by the administration of edaravone. These results provide experimental evidence demonstrating preventive effects of edaravone on cognitive dysfunction, oxidative stress and hyperphosphorylation of tau in ICV-STZ rats. Since edaravone has been used for treatment of patients with stroke, it represents a safe and established therapeutic intervention that has the potential for a novel application in the treatment of age-related neurodegenerative disorders associated with cognitive decline, such as AD.
Collapse
|
16
|
Molecular Mechanisms Underlie Alzheimer-like Tau Hyperphosphorylation and Neurodegeneration*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Liu XA, Song J, Jiang Q, Wang Q, Tian Q, Wang JZ. Expression of the hyperphosphorylated tau attenuates ER stress-induced apoptosis with upregulation of unfolded protein response. Apoptosis 2012; 17:1039-49. [DOI: 10.1007/s10495-012-0744-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q, Tian Q. Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 2011; 25:1118-25. [PMID: 20542922 DOI: 10.1177/0269881110367723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have reported recently that inhibition of protein phosphatase (PP)-2A and PP-1 by calyculin A, a specific inhibitor of PP-2A and PP-1, induced Alzheimer-like hyperphosphorylation of tau and spatial memory retention impairment. In this study, we tested the in vivo effects of melatonin on these Alzheimer-like changes. We found that administration of melatonin intraperitoneally for 9 consecutive days before injection of calyculin A could prevent calyculin A-induced synaptophysin loss, memory retention deficits, as well as hyperphosphorylation of tau and neurofilaments. Furthermore, melatonin partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307 (Y307), a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde, a marker of oxidative stress, induced by calyculin A. These results suggest that melatonin could serve as a potential therapeutic agent for preventing Alzheimer-like pathological changes and behavioral abnormality via modulating the activity of PP-2A and oxidative stress.
Collapse
Affiliation(s)
- Xifei Yang
- Department of Pathophysiology, Institute of Neuroscience, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xiong YF, Chen Q, Chen J, Zhou J, Wang HX. Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A. J Pineal Res 2011; 50:319-27. [PMID: 21244478 DOI: 10.1111/j.1600-079x.2010.00846.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have reported that calyculin A (CA), a selective inhibitor of protein phosphatase (PP)-2A and PP-1, impairs axonal transport in neuroblastoma N2a cells. Melatonin prevents Alzheimer-like hyperphosphorylation of cytoskeletal proteins and the impairment of spatial memory retention induced by CA. In this study, we tested the effects of melatonin on the impairment of axonal transport induced by CA in neuroblastoma N2a cells. We found that melatonin protected the cells from CA-induced toxicity in metabolism and viability as well as hyperphosphorylation of tau and neurofilaments. Furthermore, melatonin partially reversed the CA-induced phosphorylation of the catalytic subunit of PP-2A at tyrosine 307, a crucial site that negatively regulates the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, which are markers of oxidative stress. Melatonin also significantly reversed the CA-induced impairment of axonal transport. These results suggest that melatonin may have a role in protecting against the CA-induced impairment of axonal transport by modulating the activity of PP-2A and oxidative stress.
Collapse
Affiliation(s)
- Yu-Fang Xiong
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
20
|
Hong XP, Peng CX, Wei W, Tian Q, Liu YH, Yao XQ, Zhang Y, Cao FY, Wang Q, Wang JZ. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus 2011; 20:1339-49. [PMID: 19816983 DOI: 10.1002/hipo.20712] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An increased hippocampal neurogenesis has been observed in Alzheimer disease (AD), the most common neurodegenerative disorder characterized with accumulation of β-amyloid (Aβ) and hyperphosphorylated tau (p-tau). Studies in transgenic mouse models suggest that the amyloidosis suppresses adult neurogenesis. Although emerging evidence links tau to neurodevelopment, the direct data regarding tau phosphorylation in adult neurogenesis is missing. Here, we found that the immature neurons, identified by doublecortin (DCX) and neurogenic differentiation factor (neuroD), were only immunoreactive to p-tau but not to the non-p-tau in adult rat brain and human patients with AD, and the p-tau was coexpressed temporally and spatially with DCX and neuroD in the hippocampal dentate gyrus (DG) of the rat brains during postnatal development. A correlative increase of immature neuron markers and tau phosphorylation was induced in rat hippocampal DG by upregulating glycogen synthase kinase-3 (GSK-3), a crucial tau kinase, and the increased neurogenesis was due to an enhanced proliferation but not survival or differentiation of the newborn neurons. The hippocampal neurogenesis was severely impaired in tau knockout mice and activation of GSK-3 in these mice did not rescue the deficits. These results reveal an essential role of tau phosphorylation in adult hippocampal neurogenesis. It suggests that spatial/temporal manipulation of tau phosphorylation may be compensatory for the neuron loss in neurological disorders, including AD.
Collapse
Affiliation(s)
- Xiao-Ping Hong
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sontag JM, Nunbhakdi-Craig V, Mitterhuber M, Ogris E, Sontag E. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. J Neurochem 2010; 115:1455-65. [PMID: 21044074 PMCID: PMC3057931 DOI: 10.1111/j.1471-4159.2010.07049.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | |
Collapse
|
22
|
Motoi Y, Sahara N, Kambe T, Hattori N. Tau and neurodegenerative disorders. Biomol Concepts 2010; 1:131-45. [DOI: 10.1515/bmc.2010.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractThe mechanisms that render tau a toxic agent are still unclear, although increasing evidence supports the assertion that alterations of tau can directly cause neuronal degeneration. In addition, it is unclear whether neurodegeneration in various tauopathies occurs via a common mechanism or that specific differences exist. The aim of this review is to provide an overview of tauopathies from bench to bedside. The review begins with clinicopathological findings of familial and sporadic tauopathies. It includes a discussion of the similarities and differences between these two conditions. The second part concentrates on biochemical alterations of tau such as phosphorylation, truncation and acetylation. Although pathological phosphorylation of tau has been studied for many years, recently researchers have focused on the physiological role of tau during development. Finally, the review contains a summary of the significance of tauopathy model mice for research on neurofibrillary tangles, axonopathies, and synaptic alteration.
Collapse
Affiliation(s)
- Yumiko Motoi
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Naruhiko Sahara
- 2Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taiki Kambe
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Nobutaka Hattori
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| |
Collapse
|
23
|
Effect of PP-2A on neurite outgrowth in neuronal cells. In Vitro Cell Dev Biol Anim 2010; 46:702-7. [DOI: 10.1007/s11626-010-9329-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
|
24
|
Abstract
Protein phosphatase 2A (PP2A) is indispensable in development, and deficits of PP2A and deterioration of neuronal axons have been observed in several neurodegenerative disorders, but the direct link between PP2A and the neuronal axon development is still missing. Here, we show that PP2A is essential for axon development in transfected rat brain and the dissociated hippocampal neurons. Upregulation of PP2A catalytic subunit (PP2Ac) not only promotes formation and elongation of the functional axons but also rescues axon retardation induced by PP2A inhibition. PP2A can dephosphorylate collapsin response mediator protein-2 (CRMP2) that implements the axon polarization, whereas constitutive expression of phosphomimic-CRMP2 abrogates the effect of PP2A upregulation. We also demonstrate that PP2Ac is enriched in the distal axon of the hippocampal neurons. Our results reveal a mechanistic link between PP2A and axonogenesis/axonopathy, suggesting that upregulation of PP2A may be a promising therapeutic for some neurodegenerative disorders.
Collapse
|
25
|
Increased expression of cdk5/p25 in N2a cells leads to hyperphosphorylation and impaired axonal transport of neurofilament proteins. Life Sci 2010; 86:532-7. [DOI: 10.1016/j.lfs.2010.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 11/21/2022]
|
26
|
Hyperphosphorylation of microtubule-associated tau protein plays dual role in neurodegeneration and neuroprotection. PATHOPHYSIOLOGY 2009; 16:311-6. [DOI: 10.1016/j.pathophys.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
27
|
Wang Y, Zhang JX, Du XX, Zhao L, Tian Q, Zhu LQ, Wang SH, Wang JZ. Temporal correlation of the memory deficit with Alzheimer-like lesions induced by activation of glycogen synthase kinase-3. J Neurochem 2008; 106:2364-74. [PMID: 18643871 DOI: 10.1111/j.1471-4159.2008.05578.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have reported that activation of glycogen synthase kinase-3 (GSK-3) by ventricle injection of wortmannin (WT) and GF-109203X (GFX) induces Alzheimer-like memory deficit in rats [Liu et al., J. Neurochem. 87 (2003), 1333]. To further explore the factors responsible for the memory loss, we studied here the temporal alterations of GSK-3, tau phosphorylation, beta-amyloid (Abeta), and acetylcholine (ACh) after injection of WT/GFX, and analyzed their correlation with the memory loss. We observed that the severe memory deficit occurred at 24 and 48 h, and simultaneously, GSK-3 activation, tau hyperphosphorylation at Thr231, Ser396, and Ser404 and decline of ACh in hippocampus were detected, and these changes were mostly recovered at 72 and 96 h after the injection of WT/GFX. Remarkable increase of Abeta and intracellular accumulation of argentophilic substances were detected at 72 h. Pearson analysis showed that the memory deficit was correlated with GSK-3 activation, tau hyperphosphorylation, and decline of ACh but not with Abeta overproduction. Our data provide direct evidence demonstrating that activation of GSK-3 by WT/GFX may cause memory deficit through tau hyperphosphorylation and suppression of ACh in hippocampus.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Committee, Tongji Medical College, Huazhong University of Science and Technical, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|