1
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
2
|
Jamet M, Dupuis L, Gonzalez De Aguilar JL. Oligodendrocytes in amyotrophic lateral sclerosis and frontotemporal dementia: the new players on stage. Front Mol Neurosci 2024; 17:1375330. [PMID: 38585368 PMCID: PMC10995329 DOI: 10.3389/fnmol.2024.1375330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal adult-onset neurodegenerative disorders that share clinical, neuropathological and genetic features, which forms part of a multi-system disease spectrum. The pathological process leading to ALS and FTD is the result of the combination of multiple mechanisms that operate within specific populations of neurons and glial cells. The implication of oligodendrocytes has been the subject of a number of studies conducted on patients and related animal models. In this review we summarize our current knowledge on the alterations specific to myelin and the oligodendrocyte lineage occurring in ALS and FTD. We also consider different ways by which specific oligodendroglial alterations influence neurodegeneration and highlight the important role of oligodendrocytes in these two intrinsically associated neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Jose-Luis Gonzalez De Aguilar
- Strasbourg Translational Neuroscience and Psychiatry, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Jiang X, Liu J, Guan Y, Zhao Z, Meng F, Wang X, Gao X, Zhou F, Chen Y, Wang X. The mechanism of the WNT5A and FZD4 receptor mediated WNT/β–catenin pathway in the degeneration of ALS spinal cord motor neurons. Biochem Biophys Res Commun 2022; 609:23-30. [DOI: 10.1016/j.bbrc.2022.03.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
4
|
Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182:101664. [PMID: 31356849 DOI: 10.1016/j.pneurobio.2019.101664] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models. We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Sienna S Drake
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Nicolas Paradis-Isler
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandra Sylvester
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandre Amar-Zifkin
- McGill University Health Centre- Medical Libraries, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| | - Chelsea Douglas
- Program Manager, Plotly Technologies Inc, 5555 Gaspe Avenue #118, Montréal, QC, H2T 2A3, Canada.
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Craig S Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
5
|
FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Cells 2019; 8:cells8030279. [PMID: 30909571 PMCID: PMC6468696 DOI: 10.3390/cells8030279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression.
Collapse
|
6
|
Dell'Anno MT, Wang X, Onorati M, Li M, Talpo F, Sekine Y, Ma S, Liu F, Cafferty WBJ, Sestan N, Strittmatter SM. Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit. Nat Commun 2018; 9:3419. [PMID: 30143638 PMCID: PMC6109094 DOI: 10.1038/s41467-018-05844-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/23/2018] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery. The optimal type or regional origin of stem cells for regenerative applications in the nervous system has not yet been established. Here the authors show that human neuroepithelial stem cells from the developing spinal cord, but not those from the developing cortex, show good host-graft interaction when transplanted to rodent models of spinal cord injury.
Collapse
Affiliation(s)
- Maria Teresa Dell'Anno
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Francesca Talpo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Nenad Sestan
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA.,Department of Genetics, of Psychiatry and of Comparative Medicine, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA. .,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Shijo T, Warita H, Suzuki N, Ikeda K, Mitsuzawa S, Akiyama T, Ono H, Nishiyama A, Izumi R, Kitajima Y, Aoki M. Antagonizing bone morphogenetic protein 4 attenuates disease progression in a rat model of amyotrophic lateral sclerosis. Exp Neurol 2018; 307:164-179. [PMID: 29932880 DOI: 10.1016/j.expneurol.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, fatal neurodegenerative syndrome characterized by the systemic loss of motor neurons with prominent astrocytosis and microgliosis in the spinal cord and brain. Astrocytes play an essential role in maintaining extracellular microenvironments that surround motor neurons, and are activated by various insults. Growing evidence points to a non-cell autonomous neurotoxicity caused by chronic and sustained astrocytic activation in patients with neurodegenerative diseases, including ALS. However, the mechanisms that underlie the harmful effects of astrocytosis in patients with ALS remain unresolved. We focused on bone morphogenetic proteins as a major soluble factor that promotes astrocytogenesis and its activation in the adult spinal cord. In a transgenic rat model with ALS-linked mutant Cu/Zn superoxide dismutase gene, BMP4 was progressively up-regulated in reactive astrocytes of the spinal ventral horns, whereas the BMP-antagonist noggin was decreased in association with neuronal degeneration. Continuous intrathecal noggin supplementation after disease onset significantly ameliorated motor dysfunction symptoms, neurogenic muscle atrophy, and extended survival of symptomatic ALS model rats, despite lack of deterrence against neuronal death itself. The exogenous noggin inhibited astrocytic hypertrophy, astrocytogenesis, and neuroinflammation by inactivating both Smad1/5/8 and p38 mitogen-activated protein kinase pathways. Moreover, intrathecal infusion of a Bmp4-targeted antisense oligonucleotides and provided selective Bmp4 knockdown in vivo, which suppressed astrocyte and microglia activation, reproducing the aforementioned results by noggin treatment. Collectively, we clarified the involvement of BMP4 in the processes of excessive gliosis that exacerbate the disease progression of the ALS model rats. Our study demonstrated that BMP4, with its downstream signaling, might be a novel therapeutic target for disease-modifying therapies in ALS.
Collapse
Affiliation(s)
- Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Yasuo Kitajima
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
8
|
Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X. Screening the expression characteristics of several miRNAs in G93A-SOD1
transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2017; 145:51-67. [DOI: 10.1111/jnc.14229] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fenghua Zhou
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Caixia Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yingjun Guan
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yanchun Chen
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Qiang Lu
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Linlin Jie
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hailing Gao
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hongmei Du
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Haoyun Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yongxin Liu
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Xin Wang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
9
|
Galán L, Gómez-Pinedo U, Guerrero A, García-Verdugo JM, Matías-Guiu J. Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches. BMC Neurol 2017; 17:173. [PMID: 28874134 PMCID: PMC5585932 DOI: 10.1186/s12883-017-0956-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adult neurogenesis persists through life at least in classic neurogenic niches. Neurogenesis has been previously described as reduced in neurodegenerative diseases. There is not much knowledge about is adult neurogenesis is or not modified in amyotrophy lateral sclerosis (ALS). All previous publications has studied the ALS SOD1 (superoxide dismutase) transgenic mouse model. The purpose of this study is to examine the process of adult neurogenesis in classic niches (subventricular zone [SVZ] and subgranular zone [SGZ] of the dentate gyrus) in patients with amyotrophic lateral sclerosis (ALS), both with (ALS-FTD) and without associated frontotemporal dementia (FTD). METHODS We studied 9 autopsies of patients with ALS (including 2 with ALS-FTD) and 4 controls. ALS was confirmed histologically. Studies of the SVZ and SGZ were conducted using markers of proliferation (Ki-67, PCNA), of pluripotent neural progenitor cells (GFAPδ), neuroblasts (PSA-NCAM, DCX, TUJ1), and an astrocyte marker (GFAP). Results were analyzed with non-parametric tests. We then studied correlations between the different markers and the percentage of phosphorylated TDP-43 (pTDP-43). RESULTS We observed a statistically significant increase in proliferation in the SVZ in all patients with ALS. While this increase was more marked in ALS forms associated with dementia, the small sample size does not permit a statistical subgroup analysis. In contrast, proliferation in the SGZ was decreased in all patients. These alterations showed a positive and direct correlation with the percentage of pTDP-43 in the SVZ, and a negative, exponential correlation with that percentage in the SGZ. CONCLUSIONS We observed alterations of the proliferation of neural progenitor in classic adult neurogenic niches in patients with ALS. The 2 neurogenic niches exhibited opposite changes such that proliferation increased in the SVZ and decreased in the SGZ.
Collapse
Affiliation(s)
- Lucía Galán
- Amyotrophic Lateral Sclerosis Unit, Department of Neurology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos s/n, 28040 Madrid, Spain
| | | | - Antonio Guerrero
- Amyotrophic Lateral Sclerosis Unit, Department of Neurology, Hospital Clínico San Carlos, Calle Profesor Martín Lagos s/n, 28040 Madrid, Spain
| | - Jose Manuel García-Verdugo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Comparative Neurobiology Unit, Universidad de Valencia, Paterna, Spain
| | - Jorge Matías-Guiu
- Institute of Neurosciences, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
10
|
Syková E, Rychmach P, Drahorádová I, Konrádová Š, Růžičková K, Voříšek I, Forostyak S, Homola A, Bojar M. Transplantation of Mesenchymal Stromal Cells in Patients With Amyotrophic Lateral Sclerosis: Results of Phase I/IIa Clinical Trial. Cell Transplant 2016; 26:647-658. [PMID: 27938483 DOI: 10.3727/096368916x693716] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive untreatable neurodegenerative disorder, leading to the death of the cortical and spinal motoneurons (MNs). Bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) may represent a new approach to slowing down the progression of ALS by providing neurotrophic support to host MNs and by having an anti-inflammatory effect. We have designed a prospective, nonrandomized, open-label clinical trial (phase I/IIa, EudraCT No. 2011-000362-35) to assess the safety and efficacy of autologous multipotent BM-MSCs in ALS treatment. Autologous BM-MSCs were isolated and expanded under GMP conditions. Patients received 15 ± 4.5 × 106 of BM-MSCs via lumbar puncture into the cerebrospinal fluid. Patients were monitored for 6 months before treatment and then for an 18-month follow-up period. Potential adverse reactions were assessed, and the clinical outcome was evaluated by the ALS functional rating scale (ALSFRS), forced vital capacity (FVC), and weakness scales (WSs) to assess muscle strength on the lower and upper extremities. In total, 26 patients were enrolled in the study and were assessed for safety; 23 patients were suitable for efficacy evaluation. After intrathecal BM-MSC application, about 30% of the patients experienced a mild to moderate headache, resembling the headaches after a standard lumbar puncture. No suspected serious adverse reactions (SUSAR) were observed. We found a reduction in ALSFRS decline at 3 months after application (p < 0.02) that, in some cases, persisted for 6 months ( p < 0.05). In about 80% of the patients, FVC values remained stable or above 70% for a time period of 9 months. Values of WS were stable in 75% of patients at 3 months after application. Our results demonstrate that the intrathecal application of BM-MSCs in ALS patients is a safe procedure and that it can slow down progression of the disease.
Collapse
|
11
|
Chen D, Fu W, Zhuang W, Lv C, Li F, Wang X. Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinson's disease. J Neurosci Res 2016; 95:907-917. [PMID: 27617772 DOI: 10.1002/jnr.23879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Stem cell transplantation is a promising tool for the treatment of neurodegenerative disorders, including Parkinson's disease (PD); however, the therapeutic routes and mechanisms of mechanical approaches to stem cell transplantation must be explored. This study tests the therapeutic effect of transplantation of rat bone marrow mesenchymal stem cells (MSCs) into the substantia nigra (SN) of the PD rat. 5-Bromo-2-deoxyuridine-labeled rat MSCs were transplanted into the SN of the 6-hydroxydopamine-injected side of PD rat brains. The behavioral changes in PD rats were examined before and 4 and 8 weeks after MSC transplantation. The expression of tyrosine hydroxylase (TH) in the SN and the striatum and the survival and differentiation of MSCs were assessed by immunohistochemical and double immunofluorescence techniques. Abnormal behavior of PD rats was significantly improved by the administration of bone marrow MSCs, and the number of TH-positive cells in the SN and the optical density of TH-positive fibers in the striatum were markedly increased. Transplanted MSCs can survive and migrate in the brain and differentiate into nestin-, neuron-specific enolase-, and GFAP-positive cells. Our findings suggest that transplantation of rat bone marrow MSCs into the SN of PD rats may provide therapeutic effects. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China.,Department of Anatomy, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, People's Republic of China
| | - Wenyu Fu
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Wenxin Zhuang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Cui Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China.,Stem Cell Research and Transplantation Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fengjie Li
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Xin Wang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| |
Collapse
|
12
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
13
|
Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 2015; 32:3163-72. [PMID: 25113670 PMCID: PMC4321196 DOI: 10.1002/stem.1812] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/29/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder resulting in a lethal outcome. We studied changes in ventral horn perineuronal nets (PNNs) of superoxide dismutase 1 (SOD1) rats during the normal disease course and after the intrathecal application (5 × 105 cells) of human bone marrow mesenchymal stromal cells (MSCs) postsymptom manifestation. We found that MSCs ameliorated disease progression, significantly improved motor activity, and prolonged survival. For the first time, we report that SOD1 rats have an abnormal disorganized PNN structure around the spinal motoneurons and give different expression profiles of chondroitin sulfate proteoglycans (CSPGs), such as versican, aggrecan, and phosphacan, but not link protein-1. Additionally, SOD1 rats had different profiles for CSPG gene expression (Versican, Hapln1, Neurocan, and Tenascin-R), whereas Aggrecan and Brevican profiles remained unchanged. The application of MSCs preserved PNN structure, accompanied by better survival of motorneurons. We measured the concentration of cytokines (IL-1α, MCP-1, TNF-α, GM-CSF, IL-4, and IFN-γ) in the rats' cerebrospinal fluid and found significantly higher concentrations of IL-1α and MCP-1. Our results show that PNN and cytokine homeostasis are altered in the SOD1 rat model of ALS. These changes could potentially serve as biological markers for the diagnosis, assessment of treatment efficacy, and prognosis of ALS. We also show that the administration of human MSCs is a safe procedure that delays the loss of motor function and increases the overall survival of symptomatic ALS animals, by remodeling the recipients' pattern of gene expression and having neuroprotective and immunomodulatory effects. Stem Cells2014;32:3163–3172
Collapse
Affiliation(s)
- Serhiy Forostyak
- Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic; Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Jeyachandran A, Mertens B, McKissick EA, Mitchell CS. Type I Vs. Type II Cytokine Levels as a Function of SOD1 G93A Mouse Amyotrophic Lateral Sclerosis Disease Progression. Front Cell Neurosci 2015; 9:462. [PMID: 26648846 PMCID: PMC4664727 DOI: 10.3389/fncel.2015.00462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease that is characterized by the degradation of neurons throughout the central nervous system. Inflammation have been cited a key contributor to ALS neurodegeneration, but the timeline of cytokine upregulation remains unresolved. The goal of this study was to temporally examine the correlation between the varying levels of pro-inflammatory type I cytokines (IL-1β, IL-1α, IL-12, TNF-α, and GFAP) and anti-inflammatory type II cytokines (IL-4, IL-6, IL-10) throughout the progression of ALS in the SOD1 G93A mouse model. Cytokine level data from high copy SOD1 G93A transgenic mice was collected from 66 peer-reviewed studies. For each corresponding experimental time point, the ratio of transgenic to wild type (TG/WT) cytokine was calculated. One-way ANOVA and t-tests with Bonferonni correction were used to analyze the data. Meta-analysis was performed for four discrete stages: early, pre-onset, post-onset, and end stage. A significant increase in TG cytokine levels was found when compared to WT cytokine levels across the entire SOD1 G93A lifespan for majority of the cytokines. The rates of change of the individual cytokines, and type I and type II were not significantly different; however, the mean fold change of type I was expressed at significantly higher levels than type II levels across all stages with the difference between the means becoming more pronounced at the end stage. An overexpression of cytokines occurred both before and after the onset of ALS symptoms. The trend between pro-inflammatory type I and type II cytokine mean levels indicate a progressive instability of the dynamic balance between pro- and anti-inflammatory cytokines as anti-inflammatory cytokines fail to mediate the pronounced increase in pro-inflammatory cytokines. Very early immunoregulatory treatment is necessary to successfully interrupt ALS-induced neuroinflammation.
Collapse
Affiliation(s)
- Amilia Jeyachandran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Benjamin Mertens
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Eric A McKissick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| |
Collapse
|
15
|
Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, Tu Y, Zhou EW, Sinha B, Kristal BS, Wang X. N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol Dis 2015; 80:93-103. [DOI: 10.1016/j.nbd.2015.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
|
16
|
Sui Y, Zhao Z, Liu R, Cai B, Fan D. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2014; 9:1770-8. [PMID: 25422638 PMCID: PMC4238165 DOI: 10.4103/1673-5374.143421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1(G93A) individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dismutase 1 mutant (SOD1(G93A)) and wild-type (SOD1(WT)) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenosine monophosphate-activated protein kinase (AMPK) α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1(WT) cells, SOD1(G93A) embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKα in SOD1(G93A) cells was higher than that in SOD1(WT) cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKα phosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1(G93A) mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.
Collapse
Affiliation(s)
- Yanling Sui
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zichun Zhao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Rong Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Bin Cai
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Mühling T, Duda J, Weishaupt JH, Ludolph AC, Liss B. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci 2014; 8:353. [PMID: 25452714 PMCID: PMC4231948 DOI: 10.3389/fncel.2014.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 12/13/2022] Open
Abstract
Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1G93A transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na+/Ca2+ exchanger NCX1 were also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS.
Collapse
Affiliation(s)
- Tobias Mühling
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | - Johanna Duda
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | | | | | - Birgit Liss
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| |
Collapse
|
18
|
Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 2013; 253:91-101. [PMID: 24365539 DOI: 10.1016/j.expneurol.2013.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 01/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motoneuron loss in the CNS. In G93A-SOD1 mice, motoneuron degeneration is associated with proliferative restorative attempts of ependymal stem progenitor cells (epSPCs), usually quiescent in the spinal cord. The aims of the study were to demonstrate that epSPCs isolated from the spinal cord of G93A-SOD1 mice express neurogenic potential in vitro, and thus gain a better understanding of epSPC neural differentiation properties. For this purpose, we compared the ability of epSPCs from asymptomatic and symptomatic G93A-SOD1 and WT SOD1 transgenic mice to proliferate and differentiate into neural cells. Compared to control cells, G93A-SOD1 epSPCs differentiated more into neurons than into astrocytes, whereas oligodendrocyte proportions were similar in the two populations. G93A-SOD1 neurons were small and astrocytes had an activated phenotype. Evaluation of microRNAs, specific for neural cell fate and cell-cycle regulation, in G93A-SOD1 epSPCs showed that miR-9, miR-124a, miR-19a and miR-19b were differentially expressed. Expression analysis of the predicted miRNA targets allowed identification of a functional network in which Hes1, Pten, Socs1, and Stat3 genes were important for controlling epSPC fate. Our findings demonstrate that G93A-SOD1 epSPCs are a source of multipotent cells that have neurogenic potential in vitro, and might be a useful tool to investigate the mechanisms of neural differentiation in relation to miRNA expression whose modulation might constitute new targeted therapeutic approaches to ALS.
Collapse
|
19
|
Chen Y, Guan Y, Zhang Z, Liu H, Wang S, Yu L, Wu X, Wang X. Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res 2013; 34:390-9. [PMID: 22643084 DOI: 10.1179/1743132812y.0000000027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanchun Chen
- Department of Histology and EmbryologyShandong University School of Medicine, Jinan, China
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Yingjun Guan
- Department of Histology and EmbryologyShandong University School of Medicine, Jinan, China
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Zhenghou Zhang
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Huancai Liu
- Department of OrthopedicAffiliated Hospital, Weifang Medical University, Weifang, China
| | - Shanshan Wang
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Li Yu
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Xin Wu
- Department of Histology and EmbryologyWeifang Medical University, Weifang, China
| | - Xin Wang
- Department of NeurosurgeryBrigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
THEME 10IN VITROEXPERIMENTAL MODELS. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Yu L, Guan Y, Wu X, Chen Y, Liu Z, Du H, Wang X. Wnt Signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. Neurochem Res 2013; 38:1904-13. [PMID: 23784673 DOI: 10.1007/s11064-013-1096-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive degeneration of the motor neurons in the cortex, brainstem, and spinal cord. The etiology and mechanisms of selective motor neuron loss in ALS remain unknown. Wnt signaling is involved in neurodegenerative processes but little is known about the kinetic changes in Wnt signaling during ALS progression. In this study we used transcriptional microarray analysis to examine the expression of Wnt signaling components in the spinal cords of ALS transgenic SOD1(G93A) mice at different stages. We found that ALS onset led to the upregulation of Wnt signaling components and target genes involved in growth regulation and proliferation. We also determined the expression of Wnt inhibitory factor-1 (Wif1) and Wnt4 in the spinal cord of ALS transgenic mice at different stages by Western blot and immunofluorescence analysis. The protein levels of Wif1 and Wnt4 in the spinal cords of ALS transgenic mice were upregulated compared to those in wild-type mice. Moreover, the expression of Wif1 and Wnt4 in mature GFAP+ astrocytes was increased at the end stage of ALS. Our findings demonstrate that Wnt signaling is altered by spinal cord neuronal dysfunction in adult ALS transgenic mice, which provides new insight into ALS pathogenesis.
Collapse
Affiliation(s)
- Li Yu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261042, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang S, Guan Y, Chen Y, Li X, Zhang C, Yu L, Zhou F, Wang X. Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol Lett 2013; 35:1199-207. [PMID: 23553522 DOI: 10.1007/s10529-013-1199-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/28/2013] [Indexed: 12/01/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by chronic progressive degeneration of motor neurons resulting in muscular atrophy, paralysis, and ultimately death. We have investigated the expression of Wnt1 and Fzd1 in the spinal cords of SOD1G93A ALS transgenic mice, SOD1G93A-transfected N2a cells, and primary cultured astrocytes from SOD1G93A transgenic mice. In addition, we provided further insight into the role of Wnt1 and Fzd1 in the pathogenesis of ALS transgenic mice and discuss the mechanisms underlying the Wnt signal pathway which may be useful in the treatment of ALS. The results indicate the involvement of Wnt1 and Fzd1 in the pathogenesis and development of ALS.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, People's Republic China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pandya RS, Mao LLJ, Zhou EW, Bowser R, Zhu Z, Zhu Y, Wang X. Neuroprotection for amyotrophic lateral sclerosis: role of stem cells, growth factors, and gene therapy. Cent Nerv Syst Agents Med Chem 2013; 12:15-27. [PMID: 22283698 DOI: 10.2174/187152412800229152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/30/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
Various molecular mechanisms including apoptosis, inflammation, oxidative stress, mitochondrial dysfunction and excitotoxicity have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), though the exact mechanisms have yet to be specified. Furthermore, the underlying restorative molecular mechanisms resulting in neuronal and/or non-neuronal regeneration have to be yet elucidated. Therapeutic agents targeting one or more of these mechanisms to combat either initiation or progression of the disease are under research. Novel treatments including stem cell therapy, growth factors, and gene therapy might prolong survival and delay progression of symptoms. Harnessing the regenerative potential of the central nervous system would be a novel approach for the treatment of motor neuron death resulting from ALS. Endogenous neural replacement, if augmented with administration of exogenous growth factors or with pharmaceuticals that increase the rate of neural progenitor formation, neural migration, and neural maturation could slow the rate of cell loss enough to result in clinical improvement. In this review, we discuss the impact of therapeutic treatment involving stem cell therapy, growth factors, gene therapy, and combination therapy on disease onset and progression of ALS. In addition, we summarize human clinical trials of stem cell therapy, growth factor therapy, and gene therapy in individuals with ALS.
Collapse
Affiliation(s)
- Rachna S Pandya
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Department of Neurosurgery, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ma X, Hamadeh MJ, Christie BR, Foster JA, Tarnopolsky MA. Impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis. PLoS One 2012; 7:e36048. [PMID: 22558322 PMCID: PMC3338488 DOI: 10.1371/journal.pone.0036048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/27/2012] [Indexed: 12/30/2022] Open
Abstract
Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a 'ceiling effect' of an already heightened basal levels of hippocampal neurogenesis and BDNF expression.
Collapse
Affiliation(s)
- Xiaoxing Ma
- Medical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Mazen J. Hamadeh
- Department of Pediatrics, McMaster University, Hamilton, Canada
- Kinesiology and Health Science, York University, Toronto, Canada
| | | | - Jane A. Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Medical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Pediatrics, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
25
|
Chen Y, Guan Y, Liu H, Wu X, Yu L, Wang S, Zhao C, Du H, Wang X. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem Biophys Res Commun 2012; 420:397-403. [DOI: 10.1016/j.bbrc.2012.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022]
|
26
|
Wang H, Zhang C, Rorick A, Wu D, Chiu M, Thomas-Ahner J, Chen Z, Chen H, Clinton SK, Chan KK, Wang Q. CCI-779 inhibits cell-cycle G2-M progression and invasion of castration-resistant prostate cancer via attenuation of UBE2C transcription and mRNA stability. Cancer Res 2011; 71:4866-76. [PMID: 21593191 DOI: 10.1158/0008-5472.can-10-4576] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cell-cycle G(2)-M phase gene UBE2C is overexpressed in various solid tumors including castration-resistant prostate cancer (CRPC). Our recent studies found UBE2C to be a CRPC-specific androgen receptor (AR) target gene that is necessary for CRPC growth, providing a potential novel target for therapeutic intervention. In this study, we showed that the G(1)-S cell-cycle inhibitor-779 (CCI-779), an mTOR inhibitor, inhibited UBE2C mRNA and protein expression in AR-positive CRPC cell models abl and C4-2B. Treatment with CCI-779 significantly decreased abl cell proliferation in vitro and in vivo through inhibition of cell-cycle progression of both G(2)-M and G(1)-S phases. In addition, exposure of abl and C4-2B cells to CCI-779 also decreased UBE2C-dependent cell invasion. The molecular mechanisms for CCI-779 inhibition of UBE2C gene expression involved a decreased binding of AR coactivators SRC1, SRC3, p300, and MED1 to the UBE2C enhancers, leading to a reduction in RNA polymerase II loading to the UBE2C promoter, and attenuation of UBE2C mRNA stability. Our data suggest that, in addition to its ability to block cell-cycle G(1) to S-phase transition, CCI-779 causes a cell-cycle G(2)-M accumulation and an inhibition of cell invasion through a novel UBE2C-dependent mechanism, which contributes to antitumor activities of CCI-779 in UBE2C overexpressed AR-positive CRPC.
Collapse
Affiliation(s)
- Hongyan Wang
- Division of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 2010; 68:668-81. [PMID: 21092857 PMCID: PMC2989827 DOI: 10.1016/j.neuron.2010.09.009] [Citation(s) in RCA: 599] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/19/2023]
Abstract
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.
Collapse
Affiliation(s)
- Shin H. Kang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Masahiro Fukaya
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jason K. Yang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | | | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
28
|
Miyazaki K, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Abe K. Spinal anterior horn has the capacity to self-regenerate in amyotrophic lateral sclerosis model mice. J Neurosci Res 2009; 87:3639-48. [DOI: 10.1002/jnr.22156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Abstract
The characteristic CNS responses to injury including increased cell production and attempts at regenerative repair - implicitly predicted where not directly demonstrated by Cajal, but only now more fully confirmed - have important implications for regenerative therapies. Spontaneous CNS cell replacement compares poorly with the regenerative functional repair seen elsewhere, but harnessing, stimulating or supplementing this process represents a new and attractive therapeutic concept.Stem cells, traditionally defined as clone-forming, self-renewing, pluripotent progenitor cells, have already proved themselves to be an invaluable source of transplantation material in several clinical settings, most notably haematological malignancy, and attention is now turning to a wider variety of diseases in which there may be potential for therapeutic intervention with stem cell transplantation. Neurological diseases, with their reputation for relentless progression and incurability are particularly tantalising targets. The optimal source of stem cells remains to be determined but bone marrow stem cells may themselves be included amongst the contenders.Any development of therapies using stem cells must depend on an underlying knowledge of their basic biology. The haemopoietic system has long been known to maintain circulating populations of cells with short life spans, and this system has greatly informed our knowledge of stem cell biology. In particular, it has helped yield the traditional stem cell model - a hierarchical paradigm of progressive lineage restriction. As cells differentiate, their fate choices become progressively more limited, and their capacity for proliferation reduced, until fully differentiated, mitotically quiescent cells are generated. Even this, however, is now under challenge.
Collapse
Affiliation(s)
- C M Rice
- University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
30
|
Mizuno H, Warita H, Aoki M, Itoyama Y. Accumulation of chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons in amyotrophic lateral sclerosis transgenic rats. J Neurosci Res 2008; 86:2512-23. [PMID: 18438943 DOI: 10.1002/jnr.21702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are the major components of extracellular matrix in the central nervous system. In the spinal cord under various types of injury, reactive gliosis emerges in the lesion accompanied by CSPG up-regulation. Several types of CSPG core proteins and their side chains have been shown to inhibit axonal regeneration in vitro and in vivo. In the present study, we examined spatiotemporal expression of CSPGs in the spinal cord of transgenic (Tg) rats with His46Arg mutation in the Cu/Zn superoxide dismutase gene, a model of amyotrophic lateral sclerosis (ALS). Immunofluorescence disclosed a significant up-regulation of neurocan, versican, and phosphacan in the ventral spinal cord of Tg rats compared with age-matched controls. Notably, Tg rats showed progressive and prominent accumulation of neurocan even at the presymptomatic stage. Immunoblotting confirmed the distinct increase in the levels of both the full-length neurocan and their fragment isoforms. On the other hand, the up-regulation of versican and phosphacan peaked at the early symptomatic stage, followed by diminishment at the late symptomatic stage. In addition, double immunofluorescence revealed a colocalization between reactive astrocytes and immunoreactivities for neurocan and phosphacan, especially around residual large ventral horn neurons. Thus, reactive astrocytes are suggested to be participants in the CSPG accumulation. Although the possible neuroprotective involvement of CSPG remains to be investigated, the present results suggest that both the reactive astrocytes and the differential accumulation of CSPGs may create a nonpermissive microenvironment for neural regeneration in neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Hideki Mizuno
- Division of Neurology, Department of Neuroscience, Tohoku University Graduate School of Medicine, Tohoku University Hospital ALS Center, Sendai, Japan
| | | | | | | |
Collapse
|
31
|
Lepore AC, Dejea C, Carmen J, Rauck B, Kerr DA, Sofroniew MV, Maragakis NJ. Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration. Exp Neurol 2008; 211:423-32. [PMID: 18410928 PMCID: PMC9152669 DOI: 10.1016/j.expneurol.2008.02.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/31/2008] [Accepted: 02/20/2008] [Indexed: 12/31/2022]
Abstract
Astrocytes play important roles in normal CNS function; however, following traumatic injury or during neurodegeneration, astrocytes undergo changes in morphology, gene expression and cellular function known as reactive astrogliosis, a process that may also include cell proliferation. At present, the role of astrocyte proliferation is not understood in disease etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder that is characterized by a relatively rapid degeneration of upper and lower motor neurons. Therefore, the role of astrocyte proliferation was assessed in both acute and chronic mouse models of motor neuron degeneration, neuroadapted sindbis virus (NSV)-infected mice and SOD1(G93A) mice, respectively. While astrocytes proliferated in the lumbar spinal cord ventral horn of both disease models, they represented only a small percentage of the dividing population in the SOD1(G93A) spinal cord. Furthermore, selective ablation of proliferating GFAP(+) astrocytes in 1) NSV-infected transgenic mice in which herpes simplex virus-thymidine kinase is expressed in GFAP(+) cells (GFAP-TK) and in 2) SOD1(G93A)xGFAP-TK mice did not affect any measures of disease outcome such as animal survival, disease onset, disease duration, hindlimb motor function or motor neuron loss. Ablation of dividing astrocytes also did not alter overall astrogliosis in either model. This was likely due to the finding that proliferation of NG2(+) glial progenitors were unaffected. These findings demonstrate that while normal astrocyte function is an important factor in the etiology of motor neuron diseases such as ALS, astrocyte proliferation itself does not play a significant role.
Collapse
Affiliation(s)
- Angelo C. Lepore
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| | - Christine Dejea
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| | - Jessica Carmen
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| | - Britta Rauck
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| | - Douglas A. Kerr
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| | - Michael V. Sofroniew
- Department of Neurobiology, University of California Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763
- Department of Brain Research Institute, University of California Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763
| | - Nicholas J. Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD 21287
| |
Collapse
|