1
|
Ozga JE, Anderson KG. Reduction in delay discounting due to nicotine and its attenuation by cholinergic antagonists in Lewis and Fischer 344 rats. Psychopharmacology (Berl) 2018; 235:155-168. [PMID: 28971227 PMCID: PMC8130887 DOI: 10.1007/s00213-017-4752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs), and mecamylamine, a nonselective nAChR antagonist, attenuates effects of nicotine on delay discounting in some rat strains; whether nicotine's attenuation is specific to nAChR antagonism is unknown. OBJECTIVE During experiment 1, we evaluated dose-dependent effects of nicotine on delay discounting of pair-housed Lewis (LEW) and Fischer 344 (F344) rats. During experiment 2, we examined the sensitivity of nicotine's effects on delay discounting to pharmacological antagonism of nAChRs or muscarinic AChRs (mAChRs). MATERIALS AND METHODS Male LEW and F344 were trained to choose between one food pellet delivered immediately and three food pellets delivered after an increasing delay. During experiment 1, saline and nicotine (0.1-1.0 mg/kg) were tested acutely. During experiment 2, mecamylamine (0.25-1.0 mg/kg) or a nonselective mAChR antagonist, scopolamine (0.01-0.056 mg/kg), was administered prior to nicotine administration. RESULTS Nicotine dose dependently reduced delay discounting for both rat strains, and no strain differences were observed (ΔAUC = + 107% for 1.0 mg/kg and + 69.6% for 0.3 mg/kg relative to saline). At some doses, pretreatment with mecamylamine (range ΔAUC = - 27.6 to - 7.3%) or scopolamine (range ΔAUC = - 0.74 to - 51.6%) significantly attenuated the nicotine-induced reduction in some measures of delay discounting for both strains. CONCLUSIONS Results from experiment 1 suggest that when LEW and F344 are pair housed, there are no strain differences in delay discounting in response to nicotine. Results from experiment 2 suggest that attenuation of nicotine's effects on delay discounting may not be specific to nAChR antagonism.
Collapse
Affiliation(s)
- Jenny E. Ozga
- Department of Psychology, West Virginia University, Morgantown, WV 26505, USA
| | - Karen G. Anderson
- Department of Psychology, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Zhu J, Midde NM, Gomez AM, Sun WL, Harrod SB. Intra-ventral tegmental area HIV-1 Tat1-86 attenuates nicotine-mediated locomotor sensitization and alters mesocorticolimbic ERK and CREB signaling in rats. Front Microbiol 2015; 6:540. [PMID: 26150803 PMCID: PMC4473058 DOI: 10.3389/fmicb.2015.00540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking prevalence in the HIV-positive individuals is profoundly higher than that in the HIV-negative individuals. We have demonstrated that HIV-1 transgenic rats exhibit attenuated nicotine-mediated locomotor activity, altered cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the mesocorticolimbic regions. This study investigated the role of HIV-1 transactivator of transcription (Tat) protein in the alterations of nicotine-mediated behavior and the signaling pathway observed in the HIV-1 transgenic rats. Rats received bilateral microinjection of recombinant Tat1-86 (25 μg/side) or vehicle directed at ventral tegmental area (VTA) followed by locomotor testing in response to 13 daily intravenous injections of nicotine (0.05 mg/kg, freebase, once/day) or saline. Further, we examined the phosphorylated levels of CREB (pCREB) and ERK1/2 (pERK1/2) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and VTA. Tat diminished baseline activity in saline control rats, and attenuated nicotine-induced behavioral sensitization. Following repeated saline injection, the basal levels of pERK1 in the NAc and VTA and pERK2 in VTA were lower in the vehicle control group, relative to the Tat group. After repeated nicotine injection, pERK1 in NAc and VTA and pERK2 in VTA were increased in the vehicle group, but not in the Tat group. Moreover, repeated nicotine injections decreased pCREB in the PFC and VTA in the Tat group but not in the vehicle group. Thus, these findings indicate that the direct injection of Tat at the VTA may mediate CREB and ERK activity in response to nicotine-induced locomotor activity.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Narasimha M Midde
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Adrian M Gomez
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Steven B Harrod
- Department of Psychology, University of South Carolina , Columbia, SC, USA
| |
Collapse
|
3
|
Somkuwar SS, Kantak KM, Dwoskin LP. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder. J Neurosci Methods 2015; 252:55-63. [PMID: 25680322 DOI: 10.1016/j.jneumeth.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in spontaneously hypertensive rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax)× first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Gomez AM, Sun WL, Midde NM, Harrod SB, Zhu J. Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. Eur J Neurosci 2014; 41:109-19. [PMID: 25328101 DOI: 10.1111/ejn.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023]
Abstract
Rats raised in an enriched condition (EC) exhibit alterations in the neurobiological and behavioral response to nicotine compared with rats reared in an impoverished condition (IC) or a standard condition (SC). The current study determined whether environmental enrichment differentially regulates extracellular signal-regulated kinase1/2 (ERK1/2) activity in the prefrontal cortex in rats following nicotine sensitization or nicotine self-administration. Under the saline control condition, EC rats displayed diminished baseline activity and greater sensitization to repeated administration of nicotine compared with IC and SC rats. After repeated saline injections, the basal levels of phosphorylated ERK1/2 (pERK1/2) were higher in EC compared with IC and SC rats, which was negatively correlated with their respective baseline activities. Repeated nicotine (0.35 mg/kg) injections induced pERK1/2 to similar levels in SC and IC rats; however, the induction of pERK1/2 in EC rats by nicotine was not significantly different from saline controls, owing to their high baseline. In the self-administration paradigm, EC rats self-administered less nicotine (0.03 mg/kg/infusion) relative to IC or SC rats on a fixed ratio-1 schedule of reinforcement. Accordingly, no differences in pERK1/2 were found between EC and IC rats self-administering saline, whereas nicotine self-administration resulted in an increase in pERK1/2 in IC rats but not in EC rats. Furthermore, the levels of pERK1/2 in EC and IC rats were positively correlated with their respective total number of nicotine infusions. Thus, these findings suggest that environmental enrichment alters the basal and nicotine-mediated pERK1/2, which may contribute to enrichment-induced behavioral alterations in response to nicotine.
Collapse
Affiliation(s)
- Adrian M Gomez
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Columbia, SC, 29208, USA
| | | | | | | | | |
Collapse
|
5
|
Fan X, Li D, Zhang Y, Green TA. Differential phosphoproteome regulation of nucleus accumbens in environmentally enriched and isolated rats in response to acute stress. PLoS One 2013; 8:e79893. [PMID: 24278208 PMCID: PMC3838351 DOI: 10.1371/journal.pone.0079893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence shows that stress contributes to the pathogenesis of major depressive disorder which is a severe neuropsychiatric disorder and influences over 10% of the world's population. Our previous studies revealed that rats reared in an enriched environment display less depression-related behavior compared to rats raised in an isolated environment, which implies that environmental enrichment produces an antidepressant-like behavioral phenotype. However, the molecular mechanisms are not fully understood. Protein phosphorylation rapidly changes signaling pathway function and alters the function of proteins associated with the stress-induced depressive disorder. Thus, in this study, a phosphoproteomic approach was used to uncover differential phosphoprotein regulation in rat nucleus accumbens between isolated (IC) and enriched environmental conditions (EC) under basal conditions, and in response to acute stress. We found 23 phosphoproteins were regulated in EC vs. IC rats under basal conditions; 10 phosphoproteins regulated by stress in IC rats; and 15 regulated by stress in EC rats. Among all significantly regulated phosphoproteins, 11 of them were represented in at least two conditions. The regulated phosphoproteins represent signaling pathway proteins (including ERK2), enzymes, transcriptional regulators, protein translation regulators, transporters, chaperones and cytoskeletal proteins. These findings provide a global view for further understanding the contribution of protein phosphorylation in depression pathogenesis and antidepressant action.
Collapse
Affiliation(s)
- Xiuzhen Fan
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dingge Li
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yafang Zhang
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas A. Green
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhu J, Bardo MT, Dwoskin LP. Distinct effects of enriched environment on dopamine clearance in nucleus accumbens shell and core following systemic nicotine administration. Synapse 2012; 67:57-67. [PMID: 23065942 DOI: 10.1002/syn.21615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 01/21/2023]
Abstract
Environmental enrichment during development may reduce drug abuse liability by modulating dopamine transporter (DAT) function. Nucleus accumbens (NAc) shell and core respond differentially to regulate the rewarding properties and locomotor stimulant effects of psychostimulants. The current study evaluated dopamine (DA) clearance (CL(DA) ) in the NAc shell and core using in vivo voltammetry in rats raised in an enriched condition (EC) or an impoverished condition (IC) and determined the effect of nicotine (0.4 mg/kg) on CL(DA) . Baseline CL(DA) in NAc shell and core was not different between EC and IC rats. In the saline control group, CL(DA) in NAc shell was greater across time in IC when compared with EC rats, whereas CL(DA) in NAc core was greater in EC rats when compared with IC rats. Consistent with these findings, opposite effects of enrichment on DA clearance in shell and core were obtained following acute nicotine administration. In NAc shell, nicotine increased CL(DA) in EC rats, but not in IC rats. Conversely, in NAc core, nicotine increased CL(DA) in IC rats, but not in EC rats. The current results demonstrate that environmental enrichment differentially regulates the response to nicotine in NAc shell and core via alterations in DAT function, which may explain how environmental enrichment reduces the behavioral response to nicotine.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
7
|
Gomez AM, Midde NM, Mactutus CF, Booze RM, Zhu J. Environmental enrichment alters nicotine-mediated locomotor sensitization and phosphorylation of DARPP-32 and CREB in rat prefrontal cortex. PLoS One 2012; 7:e44149. [PMID: 22952905 PMCID: PMC3432100 DOI: 10.1371/journal.pone.0044149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Exposure within an environmental enrichment paradigm results in neurobiological adaptations and decreases the baseline of locomotor activity. The current study determined activation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32) and CREB (cAMP response element binding protein), and locomotor activity in rats raised in enriched (EC), impoverished (IC), and standard (SC) conditions following repeated administration of nicotine or saline. In the saline-control group, the basal phosphorylation state of DARPP-32 at Threonine-34 site (pDARPP-32 Thr34) in the prefrontal cortex (PFC) was lower in EC compared to IC and SC rats, which was positively correlated with their respective baseline activities. While nicotine (0.35 mg/kg, freebase) produced locomotor sensitization across all housing conditions when the nicotine-mediated locomotor activity was expressed as a percent change from their respective saline control, EC rats displayed greater sensitization to nicotine than IC and SC rats. Consistent with the behavioral findings, repeated nicotine injection increased pDARPP-32 Thr34 in PFC of EC and IC rats and in nucleus accumbens of EC rats; however, the magnitude of change from saline control in nicotine-induced enhancement of pDARPP-32 Thr34 in PFC was strikingly increased in EC rats relative to IC rats. Moreover, EC rats had lower basal phosphorylation levels of CREB at serine 133 in PFC and nucleus accumbens compared to IC and SC rats, whereas the nicotine-induced increase in phosphorylated CREB-Ser133 was more pronounced in PFC of EC rats relative to IC and SC rats. Collectively, these findings suggest innovative insights into advancing our understanding of the molecular mechanisms of enrichment-induced changes in the motivational effects of nicotine, and aiding in the identification of new therapeutic strategies for tobacco smokers.
Collapse
Affiliation(s)
- Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Charles F. Mactutus
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
8
|
Wooters TE, Bardo MT, Dwoskin LP, Midde NM, Gomez AM, Mactutus CF, Booze RM, Zhu J. Effect of environmental enrichment on methylphenidate-induced locomotion and dopamine transporter dynamics. Behav Brain Res 2011; 219:98-107. [PMID: 21219939 PMCID: PMC3062741 DOI: 10.1016/j.bbr.2011.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023]
Abstract
Rats raised in an enriched condition (EC) are less sensitive to the locomotor effects of stimulant drugs than rats raised in an impoverished condition (IC). Methylphenidate (MPD), a primary pharmacotherapy for attention-deficit/hyperactivity disorder, has abuse potential. This study determined whether environmental enrichment differentially altered the effects of MPD on locomotor activity and dopamine (DA) transporter (DAT) function. Acute and repeated MPD (3 or 10 mg/kg, s.c.) increased locomotion in EC, IC and social condition (SC) rats; however, EC rats showed a blunted response to repeated MPD (3 mg/kg). The maximal velocity (V(max)) of [(3)H]DA uptake in the presence of the combination of phorbol 12-myristate 13-acetate, a protein kinase C (PKC) activator and okadaic acid, a protein phosphatase inhibitor was decreased in EC and IC rats by 68% and 40%, respectively, indicating that DAT in prefrontal cortex (PFC) is more sensitive to PKC-mediated down-regulation in EC rats. Acute MPD (10 mg/kg) administration decreased the V(max) of [(3)H]DA uptake in PFC and striatum in EC rats, but not in IC rats. Furthermore, [(3)H]WIN 35,428 binding density was decreased in PFC of EC and IC rats, and in striatum of EC rats given repeated MPD (10 mg/kg). These results demonstrate that environmental enrichment modulates DAT dynamics in PFC. However, since the change in DAT function was observed only following the high dose of MPH (10 mg/kg), the attenuated locomotor response to repeated MPD (3 mg/kg) in EC rats is not likely due to a specific DAT alteration in the brain regions examined.
Collapse
Affiliation(s)
- Thomas E. Wooters
- Department of Psychology, University of Kentucky, Lexington, KY 40506
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40506
| | - Linda P. Dwoskin
- College of Pharmacy, University of Kentucky, Lexington, KY 40506
| | - Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Charles F. Mactutus
- Department of Psychology, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Rosemarie M. Booze
- Department of Psychology, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Jun Zhu
- College of Pharmacy, University of Kentucky, Lexington, KY 40506
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
9
|
Zhu J, Apparsundaram S, Dwoskin LP. Nicotinic receptor activation increases [3H]dopamine uptake and cell surface expression of dopamine transporters in rat prefrontal cortex. J Pharmacol Exp Ther 2009; 328:931-9. [PMID: 19088301 PMCID: PMC2682260 DOI: 10.1124/jpet.108.147025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022] Open
Abstract
Previous research shows that nicotine increases dopamine (DA) clearance in rat prefrontal cortex (PFC) and striatum via a nicotinic receptor (nAChR)-mediated mechanism. The present study investigated whether activation of nAChRs regulates DA transporter (DAT) function through a trafficking-dependent mechanism. After nicotine administration (0, 0.3, and 0.8 mg/kg s.c., 15-1440 min after injection), DAT function and trafficking in synaptosomes of PFC and striatum were determined. nAChR mediation of the effect of nicotine on DAT function and trafficking in PFC was determined by pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine. Nicotine (0.8 mg/kg, 15 and 30 min after injection) increased the maximal velocity (V(max)) of [3H]DA uptake in PFC with no change in K(m), compared with control. Biotinylation and Western blot assays showed that nicotine (0.8 mg/kg; 30 min) increased DAT cell surface expression in PFC. In contrast, a lower dose of nicotine (0.3 mg/kg; 30 min) did not alter DAT function and trafficking in PFC. Pretreatment with mecamylamine, dihydro-beta-erythroidine, or methyllycaconitine (1.5, 8.0, and 10.0 mg/kg s.c., respectively) completely blocked the nicotine-induced increase in V(max) in PFC. In addition, mecamylamine completely blocked the nicotine-induced increase in DAT cell surface expression in PFC. Nicotine did not increase DAT function and cell surface expression in striatum, indicating that nicotine modulates DAT function in a brain region-specific manner. Thus, results from the present study suggest that the nicotine-induced increases in DAT function and cell surface expression in PFC may mediate some of the behavioral effects of nicotine.
Collapse
Affiliation(s)
- Jun Zhu
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
10
|
Rahman S, Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT. The novel nicotinic receptor antagonist N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide decreases nicotine-induced dopamine metabolism in rat nucleus accumbens. Eur J Pharmacol 2008; 601:103-5. [PMID: 19000671 PMCID: PMC2646104 DOI: 10.1016/j.ejphar.2008.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 11/22/2022]
Abstract
The current study examined the effect of the novel nicotinic acetylcholine receptor antagonist, N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), on nicotine-induced dopamine metabolism in rat nucleus accumbens, striatum and medial prefrontal cortex. Acute nicotine (0.5 mg/kg, s.c.) produced an increase in the content of dihydroxyphenylacetic acid (DOPAC) in nucleus accumbens, but not in striatum or medial prefrontal cortex. Pretreatment with bPiDDB (1 or 3 mg/kg, s.c.) dose-dependently inhibited the nicotine-induced increase in DOPAC content in nucleus accumbens. These results indicate that bPiDDB inhibits the nicotine-induced increase in DOPAC in reward-relevant brain region targeting nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Dwoskin LP, Wooters TE, Sumithran SP, Siripurapu KB, Joyce BM, Lockman PR, Manda VK, Ayers JT, Zhang Z, Deaciuc AG, McIntosh JM, Crooks PA, Bardo MT. N,N'-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity. J Pharmacol Exp Ther 2008; 326:563-76. [PMID: 18460644 PMCID: PMC3089982 DOI: 10.1124/jpet.108.136630] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.
Collapse
Affiliation(s)
- Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|