1
|
Barbon S, Stocco E, Negro A, Dalzoppo D, Borgio L, Rajendran S, Grandi F, Porzionato A, Macchi V, De Caro R, Parnigotto PP, Grandi C. In vitro assessment of TAT - Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration. Toxicol Appl Pharmacol 2016; 309:121-8. [PMID: 27597256 DOI: 10.1016/j.taap.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022]
Abstract
In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury.
Collapse
Affiliation(s)
- Silvia Barbon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua, Italy.
| | - Elena Stocco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua, Italy.
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Via Colombo 3, 35121 Padua, Italy.
| | - Daniele Dalzoppo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy.
| | - Luca Borgio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy.
| | - Senthilkumar Rajendran
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy.
| | - Francesca Grandi
- Department of Women's and Children's Health, Pediatric Surgery, University of Padua, Via Giustiniani 3, 35121 Padua, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua, Italy.
| | - Veronica Macchi
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua, Italy.
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Via Gabelli 65, 35121 Padua, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Via De Sanctis 10, Caselle di Selvazzano Dentro, 35030 Padua, Italy.
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
2
|
Saleh A, Roy Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Martens C, Morrow D, Schartner E, Frizzi KE, Calcutt NA, Fernyhough P. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 2012; 65:65-73. [PMID: 23022047 DOI: 10.1016/j.neuropharm.2012.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
Abstract
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Di Liddo R, Grandi C, Dalzoppo D, Villani V, Venturini M, Negro A, Sartore L, Artico M, Conconi MT, Parnigotto PP. In vitro evaluation of TAT-OP1 osteogenic properties and prospects for in vivo applications. J Tissue Eng Regen Med 2012; 8:694-705. [PMID: 22972614 DOI: 10.1002/term.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 03/22/2012] [Accepted: 06/11/2012] [Indexed: 11/11/2022]
Abstract
So far, osteogenic protein 1 (OP1) is biotechnologically produced and approved for the treatment of human lumbar spine fusion and long bone non-union fractures. When combined with the TAT sequence, it has been demonstrated in vitro to be easily taken up by PC12 neuronal cells and to acquire its biological activity after intracellular refolding. In this study, TAT-OP1 was shown to be a useful strategy to efficiently drive denatured OP1 into mouse MC3T3E1 pre-osteoblasts. The correct in vitro protein refolding was verified by the activation of the BMP cascade, while the osteogenic potential of OP1 was demonstrated by increased expression of alkaline phosphatase, osteonectin and osteocalcin.
Collapse
Affiliation(s)
- R Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Couvreur O, Aubourg A, Crépin D, Degrouard J, Gertler A, Taouis M, Vacher CM. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012; 302:E458-67. [PMID: 22146310 DOI: 10.1152/ajpendo.00388.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a neural cytokine that reduces appetite and body weight when administrated to rodents or humans. We have demonstrated recently that the level of CNTF in the arcuate nucleus (ARC), a key hypothalamic region involved in food intake regulation, is positively correlated with protection against diet-induced obesity. However, the comprehension of the physiological significance of neural CNTF action was still incomplete because CNTF lacks a signal peptide and thus may not be secreted by the classical exocytosis pathways. Knowing that CNTF distribution shares similarities with that of its receptor subunits in the rat ARC, we hypothesized that CNTF could exert a direct intracrine effect in ARC cells. Here, we demonstrate that CNTF, together with its receptor subunits, translocates to the cell nucleus of anorexigenic POMC neurons in the rat ARC. Furthermore, the stimulation of hypothalamic nuclear fractions with CNTF induces the phosphorylation of several signaling proteins, including Akt, as well as the transcription of the POMC gene. These data strongly suggest that intracellular CNTF may directly modulate POMC gene expression via the activation of receptors localized in the cell nucleus, providing a novel plausible mechanism of CNTF action in regulating energy homeostasis.
Collapse
Affiliation(s)
- Odile Couvreur
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Vieira AS, de Rezende ACS, Rogerio F. Evaluating motor neuron death in neonatal rats subjected to sciatic nerve lesion. Methods Mol Biol 2012; 846:383-91. [PMID: 22367827 DOI: 10.1007/978-1-61779-536-7_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neonatal sciatic nerve lesion is a useful experimental model for the study of neuronal cell death. Sciatic nerve transection or crush is the most frequently used approach to evaluate motoneuron loss in the lumbar enlargement of the spinal cord. Here we describe and illustrate the surgical procedures performed in our laboratory to assess motoneuron cell death and the related cellular mechanisms.
Collapse
Affiliation(s)
- Andre Schwambach Vieira
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, State University of Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
6
|
Vieira AS, Rezende ACS, Grigoletto J, Rogério F, Velloso LA, Skaper SD, Negro A, Langone F. Ciliary neurotrophic factor infused intracerebroventricularly shows reduced catabolic effects when linked to the TAT protein transduction domain. J Neurochem 2009; 110:1557-66. [PMID: 19573019 DOI: 10.1111/j.1471-4159.2009.06259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ciliary neurotrophic factor (CNTF) regulates the differentiation and survival of a wide spectrum of developing and adult neurons, including motor neuron loss after injury. We recently described a cell-penetrant recombinant human CNTF (rhCNTF) molecule, formed by fusion with the human immunodeficiency virus-1 transactivator of transcription (TAT) protein transduction domain (TAT-CNTF) that, upon subcutaneous administration, retains full neurotrophic activity without cytokine-like side-effects. Although the CNTF receptor is present in hypothalamic nuclei, which are involved in the control of energy, rhCNTF but not TAT-CNTF stimulates signal transducers and activators of transcription 3 phosphorylation in the rat hypothalamus after subcutaneous administration. This could be due limited TAT-CNTF distribution in the hypothalamus and/or altered intracellular signaling by the fusion protein. To explore these possibilities, we examined the effect of intracerebroventricular administration of TAT-CNTF in male adult rats. TAT-CNTF-induced weight loss, although the effect was smaller than that seen with either rhCNTF or leptin (which exerts CNTF-like effects via its receptor). In contrast to rhCNTF and leptin, TAT-CNTF neither induced morphological changes in adipose tissues nor increased uncoupling protein 1 expression in brown adipose tissue, a characteristic feature of rhCNTF and leptin. Acute intracerebroventricular administration of TAT-CNTF induced a less robust phosphorylation of signal transducers and activators of transcription 3 in the hypothalamus, compared with rhCNTF. The data show that fusion of a protein transduction domain may change rhCNTF CNS distribution, while further strengthening the utility of cell-penetrating peptide technology to neurotrophic factor biology beyond the neuroscience field.
Collapse
Affiliation(s)
- André S Vieira
- Department of Genetics, Evolution and Bioagents, State University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|