1
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
da Silva Barbirato D, de Melo Vasconcelos AF, Dantas de Moraes SL, Pellizzer EP, do Egito Vasconcelos BC. Analgesic potential of transdermal nicotine patch in surgery: a systematic review and meta-analysis of randomised placebo-controlled trials. Eur J Clin Pharmacol 2023; 79:589-607. [PMID: 36947193 DOI: 10.1007/s00228-023-03475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVES We aimed (1) to systematically review the efficacy of transdermal nicotine patches (NP) for postoperative analgesia, (2) to establish the current quality of evidence and assist clinical decision-making on the subject, and (3) to identify methodological limitations and the need for more well-designed studies. MATERIALS AND METHODS We searched six electronic databases, protocol records, and other sources without date or language restriction until March 2022. To develop the search strategy, we formulated a clinical question by using the PICOD method. Eligibility criteria included randomised placebo-controlled trials on the analgesic potential of NP for surgical procedures. This systematic review followed the PRISMA 2020 statement, and we registered the protocol in PROSPERO (#CRD42020205956). RESULTS We included 10 randomised placebo-controlled trials (535 patients). The NP administered before induction of anaesthesia and at beginning of surgery reduced the pain immediately after surgery (-0.38; 95% confidence interval [CI]: -0.73 to -0.02), and 6 h (-0.34; 95% CI: -0.68 to -0.01), 12 h (-0.43; 95% CI: -0.71 to -0.15) and 24 h (-0.35; 95%CI: -0.59 to -0.10) after surgery, compared with the placebo patch (PP) group. Sensitivity testing suggests that opioid use could underestimate NP analgesia. Late demand for the first analgesic and consumption of rescue analgesics tended to be lower in the NP group. CONCLUSIONS The current findings suggest, with low certainty of evidence, the analgesic potential of NP for surgical procedures. CLINICAL RELEVANCE Perioperative use of NP significantly improved postoperative pain, even when opioids were administered or prescribed. Nevertheless, the clinical relevance should be interpreted with caution, owing to the effect sizes of the summary measures and methodological issues. The analgesic potential of NP as an adjuvant therapy to regulate pain and acute inflammation may offer certain clinical advantages, thus warranting further investigation.
Collapse
Affiliation(s)
- Davi da Silva Barbirato
- Division of Oral and Maxillofacial Surgery, Dental School, University of Pernambuco (UPE), Arnóbio Marques St., 310, Recife, PE, 50100-130, Brazil
| | | | | | - Eduardo Piza Pellizzer
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Belmiro Cavalcanti do Egito Vasconcelos
- Division of Oral and Maxillofacial Surgery, Dental School, University of Pernambuco (UPE), Arnóbio Marques St., 310, Recife, PE, 50100-130, Brazil.
- Oral and Maxillofacial Surgery at Hospital da Restauração, Recife, PE, Brazil.
| |
Collapse
|
3
|
Costantini E, Carrarini C, Borrelli P, De Rosa M, Calisi D, Consoli S, D’Ardes D, Cipollone F, Di Nicola M, Onofrj M, Reale M, Bonanni L. Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer's disease. Immun Ageing 2023; 20:3. [PMID: 36647139 PMCID: PMC9843938 DOI: 10.1186/s12979-023-00329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The diffuse distribution of nicotinic cholinergic receptors (nAChRs) in both brain and peripheral immune cells points out their involvement in several pathological conditions. Indeed, the deregulated function of the nAChR was previously correlated with cognitive decline and neuropsychiatric symptoms in Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB). The evaluation in peripheral immune cells of nAChR subtypes, which could reflect their expression in brain regions, is a prominent investigation area. OBJECTIVES This study aims to evaluate the expression levels of both the nAChR subunits and the main known inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) of patients with DLB and AD to better characterize their involvement in these two diseases. RESULTS Higher gene expression levels of TNFα, IL6 and IL1β were observed in DLB and AD patients in comparison with healthy controls (HC). In our cohort, a reduction of nAChRα4, nAChRβ2 and nAChRβ4 was detected in both DLB and AD with respect to HC. Considering nAChR gene expressions in DLB and AD, significant differences were observed for nAChRα3, nAChRα4, nAChRβ2 and nAChRβ4 between the two groups. Moreover, the acetylcholine esterase (AChE) gene expression was significantly higher in DLB than in AD. Correlation analysis points out the relation between different nAChR subtype expressions in DLB (nAChRβ2 vs nAChRα3; nAChRα4 vs nAChRα3) and AD (nAChRα4 vs nAChRα3; nAChRα4 vs nAChRβ4; nAChRα7 vs nAChRα3; nAChRα7 vs nAChRα4). CONCLUSIONS Different gene expressions of both pro-inflammatory cytokines and nAChR subtypes may represent a peripheral link between inflammation and neurodegeneration. Inflammatory cytokines and different nAChRs should be valid and accurate peripheral markers for the clinical diagnosis of DLB and AD. However, although nAChRs show a great biological role in the regulation of inflammation, no significant correlation was detected between nAChR subtypes and the examined cytokines in our cohort of patients.
Collapse
Affiliation(s)
- E. Costantini
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - C. Carrarini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - P. Borrelli
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. De Rosa
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. D’Ardes
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - F. Cipollone
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Di Nicola
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Onofrj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Reale
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - L. Bonanni
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
4
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
5
|
Miller DR, Khoshbouei H, Garai S, Cantwell LN, Stokes C, Thakur G, Papke RL. Allosterically Potentiated α7 Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability and Current-Independent Control of Intracellular Calcium. Mol Pharmacol 2020; 98:695-709. [PMID: 33020143 PMCID: PMC7662531 DOI: 10.1124/molpharm.120.000012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022] Open
Abstract
The currents of α7 nicotinic acetylcholine receptors activated by acetylcholine (ACh) are brief. The channel has high permeability to calcium relative to monovalent cations and shows inward rectification. It has been previously noted that in the presence of positive allosteric modulators (PAMs), currents through the channels of α7 receptors differ from normal α7 currents both in sensitivity to specific channel blockers and their current-voltage (I-V) relationships, no longer showing inward rectification. Linear I-V functions are often associated with channels lacking calcium permeability, so we measured the I-V functions of α7 receptors activated by ACh when PAMs were bound to the allosteric binding site in the transmembrane domain. Currents were recorded in chloride-free Ringer's solution with low or high concentrations of extracellular calcium to determine the magnitude of the reversal potential shift in the two conditions as well as the I-V relationships. ACh-evoked currents potentiated by the allosteric agonist-PAMs (ago-PAMs) (3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (GAT107) and 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propenamide (B-973B) showed reduced inward rectification and calcium-dependent reversal potential shifts decreased by 80%, and 50%, respectively, compared with currents activated by ACh alone, indicative of reduced calcium permeability. Currents potentiated by 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide were also linear and showed no calcium-dependent reversal potential shifts. The ago-PAMs GAT-107 and B-973B stimulated increases in intracellular calcium in stably transfected HEK293 cells. However, these calcium signals were delayed relative to channel activation produced by these agents and were insensitive to the channel blocker mecamylamine. Our results indicate that, although allosterically activated α7 nicotinic ACh receptor may affect intracellular calcium levels, such effects are not likely due to large channel-dependent calcium influx. SIGNIFICANCE STATEMENT: Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptor can increase channel activation by two or more orders of magnitude, raising the concern that, due to the relatively high calcium permeability of α7 receptors activated by acetylcholine alone, such efficacious PAMs may have cytotoxic side effects. We show that PAMs alter the ion conduction pathway and, in general, reduce the calcium permeability of the channels. This supports the hypothesis that α7 effects on intracellular calcium may be independent of channel-mediated calcium influx.
Collapse
Affiliation(s)
- Douglas R Miller
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Habibeh Khoshbouei
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Sumanta Garai
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Lucas N Cantwell
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Clare Stokes
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Ganesh Thakur
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Roger L Papke
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| |
Collapse
|
6
|
Effectiveness of nicotine patch for the control of pain, oedema, and trismus following third molar surgery: a randomized clinical trial. Int J Oral Maxillofac Surg 2020; 49:1508-1517. [DOI: 10.1016/j.ijom.2019.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023]
|
7
|
D'Alessandro M, Richard M, Stigloher C, Gache V, Boulin T, Richmond JE, Bessereau JL. CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors. eLife 2018; 7:39649. [PMID: 30407909 PMCID: PMC6245729 DOI: 10.7554/elife.39649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
The assembly of neurotransmitter receptors in the endoplasmic reticulum limits the number of receptors delivered to the plasma membrane, ultimately controlling neurotransmitter sensitivity and synaptic transfer function. In a forward genetic screen conducted in the nematode C. elegans, we identified crld-1 as a gene required for the synaptic expression of ionotropic acetylcholine receptors (AChR). We demonstrated that the CRLD-1A isoform is a membrane-associated ER-resident protein disulfide isomerase (PDI). It physically interacts with AChRs and promotes the assembly of AChR subunits in the ER. Mutations of Creld1, the human ortholog of crld-1a, are responsible for developmental cardiac defects. We showed that Creld1 knockdown in mouse muscle cells decreased surface expression of AChRs and that expression of mouse Creld1 in C. elegans rescued crld-1a mutant phenotypes. Altogether these results identify a novel and evolutionarily-conserved maturational enhancer of AChR biogenesis, which controls the abundance of functional receptors at the cell surface.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Magali Richard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Christian Stigloher
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Vincent Gache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Boulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
8
|
Machaalani R, Ghazavi E, Hinton T, Makris A, Hennessy A. Immunohistochemical expression of the nicotinic acetylcholine receptor (nAChR) subunits in the human placenta, and effects of cigarette smoking and preeclampsia. Placenta 2018; 71:16-23. [DOI: 10.1016/j.placenta.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 09/29/2018] [Indexed: 01/03/2023]
|
9
|
Sex difference in counts of α4 and α7 nicotinic acetylcholine receptors in the nasal polyps of adults with or without exposure to tobacco smoke. The Journal of Laryngology & Otology 2018; 132:596-599. [PMID: 29888694 DOI: 10.1017/s0022215118000373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess counts of α4 and α7 nicotinic acetylcholine receptors in nasal polyps of adults with or without long-term exposure to cigarette tobacco smoke. METHODS Twenty-two patients with and 22 patients without exposure to cigarette tobacco smoke participated in the study. After endoscopic polypectomy, the fragments of the nasal polyps were analysed by immunohistochemistry. RESULTS Compared to patients with no exposure, patients with exposure showed higher counts of α4 and α7 nicotinic acetylcholine receptors (t-test, p 0.05). CONCLUSION Exposure to cigarette tobacco smoke may induce increased counts of α4 and α7 nicotinic acetylcholine receptors in nasal polyps of adults, with lower counts in males than females without exposure to tobacco smoke.
Collapse
|
10
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 2018; 15:96. [PMID: 29587798 PMCID: PMC5872578 DOI: 10.1186/s12974-018-1133-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neuro–immune interaction underlies chronic neuroinflammation and aberrant sensory processing resulting in neuropathic pain. Despite the pathological significance of both neuroinflammation-driven peripheral sensitization and spinal sensitization, the functional relationship between these two distinct events has not been understood. Methods In this study, we determined whether inhibition of inflammatory macrophages by administration of α4β2 nicotinic acetylcholine receptor (nAChR) agonists improves neuropathic pain and affects microglial activation in the spinal dorsal horn (SDH) in mice following partial sciatic nerve ligation (PSL). Expression levels of neuroinflammatory molecules were evaluated by RT-qPCR and immunohistochemistry, and PSL-induced mechanical allodynia was defined by the von Frey test. Results Flow cytometry revealed that CD11b+ F4/80+ macrophages were accumulated in the injured sciatic nerve (SCN) after PSL. TC-2559, a full agonist for α4β2 nAChR, suppressed the upregulation of interleukin-1β (IL-1β) in the injured SCN after PSL and attenuated lipopolysaccharide-induced upregulation of IL-1β in cultured macrophages. Systemic (subcutaneous, s.c.) administration of TC-2559 during either the early (days 0–3) or middle/late (days 7–10) phase of PSL improved mechanical allodynia. Moreover, local (perineural, p.n.) administration of TC-2559 and sazetidine A, a partial agonist for α4β2 nAChR, during either the early or middle phase of PSL improved mechanical allodynia. However, p.n. administration of sazetidine A during the late (days 21–24) phase did not show the attenuating effect, whereas p.n. administration of TC-2559 during this phase relieved mechanical allodynia. Most importantly, p.n. administration of TC-2559 significantly suppressed morphological activation of Iba1+ microglia and decreased the upregulation of inflammatory microglia-dominant molecules, such as CD68, interferon regulatory factor 5, and IL-1β in the SDH after PSL. Conclusion These findings support the notion that pharmacological inhibition of inflammatory macrophages using an α4β2 nAChR agonist exhibit a wide therapeutic window on neuropathic pain after nerve injury, and it could be nominated as a novel pharmacotherapy to relieve intractable pain. Electronic supplementary material The online version of this article (10.1186/s12974-018-1133-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| |
Collapse
|
11
|
Dong J, Segawa R, Mizuno N, Hiratsuka M, Hirasawa N. Inhibitory effects of nicotine derived from cigarette smoke on thymic stromal lymphopoietin production in epidermal keratinocytes. Cell Immunol 2016; 302:19-25. [PMID: 26786889 DOI: 10.1016/j.cellimm.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/31/2015] [Accepted: 01/01/2016] [Indexed: 01/02/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is regarded as the main factor responsible for the pathogenesis of atopic dermatitis (AD). Cigarette smoke is an aggravating factor for allergies, but has been reported to decrease the risk of AD. In the present study, we evaluated the role of nicotine, the main constituent in cigarette smoke extract, and its underlying mechanism of action in the regulation of TSLP expression. We found that nicotine significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced TSLP expression in BALB/c mice and the mouse keratinocyte cell line PAM212. Nicotine inhibition of TSLP production was abolished by pretreatments with α7 nicotinic acetylcholine receptor (α7 nAChR) antagonists, AMP-activated protein kinase (AMPK) inhibitor, and phosphoinositide 3-kinase (PI3K) inhibitors. The same inhibitors abolished inhibition of nuclear factor-κB (NF-κB) activation by nicotine. These results suggest that nicotine inhibits the expression of TSLP by suppressing the activation of NF-κB through the α7 nAChR-PI3K-AMPK signaling pathway.
Collapse
Affiliation(s)
- Jiangxu Dong
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
12
|
Oh-hashi K, Kanamori Y, Hirata Y, Kiuchi K. Characterization of V-ATPase inhibitor-induced secretion of cysteine-rich with EGF-like domains 2. Cell Biol Toxicol 2014; 30:127-36. [PMID: 24687431 DOI: 10.1007/s10565-014-9274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/17/2014] [Indexed: 01/03/2023]
Abstract
We previously demonstrated that cysteine-rich with EGF-like domains 2 (CRELD2), a novel ER stress-inducible factor, is a secretory glycoprotein; however, the stimuli that induce CRELD2 secretion have not yet been characterized. In this study, we found that the perturbation of intravesicular acidification of cytoplasmic organelles in HEK293 cells stably expressing wild-type (wt) CRELD2 induced its secretion. In particular, Concanamycin A (CMA) and Bafilomycin A1 (Baf), inhibitors of vacuolar ATPase (V-ATPase), increased the secretion of CRELD2 without relying on its C-terminal structure. The levels of secretion of EGFP-fused CRELD2 (SP-EGFP-CRELD2), which consists of EGFP following the putative signal peptide (SP) sequence of CRELD2, from COS7 cells transiently transfected with this construct were also increased after each of the treatments, but their intracellular localization was barely affected by CMA treatment. Transient overexpression of 78-kDa glucose-regulated protein (GRP78) and protein disulfide isomerase (PDI) also increased the secretion of CRELD2 from HEK293 cells expressing wt CRELD2, whereas the perturbation of intravesicular acidification did not alter the expression of GRP78 and PDI in the HEK293 cells. We further studied the roles of intracellular calcium ions and the Golgi apparatus in the secretion of CRELD2 from HEK293 cells in which intravesicular acidification was perturbed. The treatment with calcium ionophore increased the secretion of wt CRELD2, while that with BAPTA-AM, an intracellular calcium chelator, did not reduce the CMA-induced CRELD2 secretion. By contrast, treatment with brefeldin A (BFA), which inhibits the transportation of proteins from the ER to the Golgi apparatus, almost completely abolished the secretion of wt CRELD2 from the HEK293 cells. In conclusion, we demonstrated that the intravesicular acidification by V-ATPase regulates the secretion of CRELD2 without relying on the balance of intracellular calcium ions and the expression of ER chaperones such as GRP78 and PDI. These findings concerning the role of V-ATPases in modulating the secretion of CRELD2, a novel ER stress-inducible secretory factor, may provide new insights into the prevention and treatment of certain ER stress-related diseases.
Collapse
Affiliation(s)
- Kentaro Oh-hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan,
| | | | | | | |
Collapse
|
13
|
Grundey J, Freznosa S, Klinker F, Lang N, Paulus W, Nitsche MA. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology (Berl) 2013; 229:653-64. [PMID: 23644914 DOI: 10.1007/s00213-013-3125-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
RATIONAL Activation of nicotinic acetylcholine receptors has a major neuromodulatory impact on central nervous system function. Beyond acute activation, chronic nicotine intake has long-lasting effects on cortical excitability in animal experiments, caused by receptor up- or down-regulation. Knowledge about the impact of nicotine on cortical excitability in humans, however, is limited. OBJECTIVES We therefore aimed to explore the effect of nicotine intake on cortical excitability in healthy human smokers and non-smokers. METHODS The primary motor cortex served as model, and cortical excitability was monitored via transcranial magnetic stimulation (TMS). Corticospinal excitability and intracortical excitability were recorded before and after application of nicotine patch in both groups. Corticospinal excitability was explored by motor threshold and input/output curve (I/O curve), and intracortical excitability was explored by means of paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI), I-wave facilitation and short-latency afferent inhibition (SAI)). RESULTS The results show that smokers during nicotine withdrawal display increased corticospinal excitability with regard to the I/O curve (TMS intensity 150 % of resting motor threshold) compared to non-smokers and furthermore enhanced SAI and diminished ICF at the intracortical circuit level. After administration of nicotine, intracortical facilitation in smokers increased, while in non-smokers, inhibition (SICI, SAI) was enhanced. CONCLUSION Our results show that chronic nicotine consumption in smokers alters cortical excitability independent from acute nicotine consumption and that acute nicotine has different effects on motor cortical excitability in both groups.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
14
|
Nirogi R, Goura V, Abraham R, Jayarajan P. α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol 2013; 712:22-9. [PMID: 23660369 DOI: 10.1016/j.ejphar.2013.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/31/2023]
Abstract
α4β2* neuronal nicotinic acetylcholine receptor are ligand-gated ion channels and widely expressed throughout the central and peripheral nervous system. α4β2* neuronal nicotinic acetylcholine receptor play crucial role in pain signaling via modulation of multiple neurotransmitters like acetylcholine, dopamine, γ-amino butyric acid (GABA) and norepinephrine. Both spinal and supraspinal pathways are involved in the mechanisms by which α4β2* neuronal nicotinic acetylcholine receptor ligands modulate the neuropathic and inflammatory pain. Selective α4β2* neuronal nicotinic acetylcholine receptor ligands are being developed for the treatment of neuropathic and inflammatory pain as they show considerable efficacy in a wide range of preclinical pain models. Agonists/partial agonists of α4β2* neuronal nicotinic acetylcholine receptor show efficacy in animal models of pain and their anti-nociceptive properties are blocked by nicotinic antagonists. Positive allosteric modulators are being developed with the aim to increase the potency or therapeutic window of agonists/partial agonists. Accumulating evidences suggest that anti-nociceptive effects of nicotinic acetylcholine receptor ligands may not be mediated solely by α4β2* neuronal nicotinic acetylcholine receptor. We have also reviewed the stage of clinical development of various α4β2* neuronal nicotinic acetylcholine receptor ligands.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- In-Vivo Pharmacology, Discovery Research, Suven Life Sciences Ltd., Serene Chambers, Road No. 5, Avenue-7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
15
|
Alkadhi KA, Alzoubi KH, Srivareerat M, Tran TT. Elevation of BACE in an Aβ rat model of Alzheimer's disease: exacerbation by chronic stress and prevention by nicotine. Int J Neuropsychopharmacol 2012; 15:223-233. [PMID: 21356140 DOI: 10.1017/s1461145711000162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In Alzheimer's disease (AD), progressive accumulation of β-amyloid (Aβ) peptides impairs nicotinic acetylcholine receptor (nAChR) function by a mechanism that may involve α7 and α4β2-nAChR subtypes. Additionally, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE), the rate-limiting enzyme in the pathogenic Aβ production pathway, is expressed at high levels in hippocampal and cortical regions of AD brains. We measured hippocampal area CA1 protein levels of BACE and α7- and α4β2-nAChR subunits using an Aβ rat model of AD (14-d osmotic pump i.c.v. infusion of 300 pmol/d Aβ peptides) in the presence and absence of chronic stress and/or chronic nicotine treatment. There was a significant increase in the levels of BACE in Aβ-infused rats, which were markedly intensified by chronic (4-6 wk) stress, but were normalized in Aβ rats chronically treated with nicotine (1 mg/kg b.i.d.). The levels of the three subunits α7, α4 and β2 were significantly decreased in Aβ rats, but these were also normalized in Aβ rats chronically treated with nicotine. Chronic stress did not further aggravate the reduction of nAChRs in Aβ-infused rats. The increased BACE levels and decreased nAChR levels, which are established hallmarks of AD, provide additional support for the validity of the Aβ i.c.v.-infused rat as a model of AD.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| | | | | | | |
Collapse
|
16
|
Oh-hashi K, Kunieda R, Hirata Y, Kiuchi K. Biosynthesis and secretion of mouse cysteine-rich with EGF-like domains 2. FEBS Lett 2011; 585:2481-7. [PMID: 21729698 DOI: 10.1016/j.febslet.2011.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/02/2011] [Accepted: 06/23/2011] [Indexed: 01/26/2023]
Abstract
In this study, we found that Cysteine-rich with EGF-like domains 2 (CRELD2), a novel endoplasmic reticulum stress-inducible protein, is not only localized in the ER-Golgi apparatus but also spontaneously secreted. Deletion of four C-terminal amino acids from mouse CRELD2 or addition of tag-peptides to its C-terminus dramatically enhanced CRELD2 secretion. Intra- and extra-cellular CRELD2 is differentially glycosylated and its spontaneous secretion was significantly prevented by overexpression of a dominant negative mutant Sar1 and treatment with brefeldin A. Overexpression of wild-type GRP78 remarkably enhanced the secretion of wild-type but not mutant CRELD2. Our results demonstrate both that CRELD2 is a novel secretory glycoprotein regulated by Sar1 and GRP78 and that the C-terminal of CRELD2 plays a crucial role in its secretion.
Collapse
Affiliation(s)
- Kentaro Oh-hashi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
| | | | | | | |
Collapse
|
17
|
Hu J, Zhu C, Liu Y, Wang F, Huang Z, Fan W, Wu J. Dynamic alterations of gene expression of nicotinic acetylcholine receptor α7, α4 and β2 subunits in an acute MPTP-lesioned mouse model. Neurosci Lett 2011; 494:232-6. [PMID: 21406211 DOI: 10.1016/j.neulet.2011.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/25/2011] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Epidemiologic studies show that the prevalence of Parkinson's disease (PD) is lower in smokers than in nonsmokers. Nicotine, a potent agonist of nicotinic acetylcholine receptors (nAChRs), excites midbrain dopaminergic neurons and this may contribute to the anti-parkinsonian effects. However, the alterations in gene expression of nAChR subunits using an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model remain unclear. In the present study, we profile the time course of nAChR α7, α4 and β2 subunit expression levels using a comparative RT-PCR approach after acute MPTP injection. The results fall into four categories. (1) MPTP treatment transiently increased nAChR α7 (after last injection of MPTP 3 and 24 h), α4 and β2 (24 h) mRNA expression in the substantia nigra (SN) and striatum. (2) Compared to cortical and hippocampal tissues, this transient increase of nAChR subunit expression specifically occurred in the SN and striatum. (3) In the acute MPTP model, time-courses of altered expression for nAChR α7, α4 and β2 subunits closely mirrored the deficits observed in animal motor activity. (4) Stereological data showed that after administration of MPTP for 24h, there was a robust astrogliosis in the SN associated with significant dopaminergic neurodegeneration. These changes followed or paralleled MPTP-induced elevation in the levels of α7, α4 and β2 mRNAs. Collectively, our results demonstrate that nAChRs are important targets in the MPTP neurotoxic process. These data suggest that therapeutic strategies targeted toward nAChR α7, α4 and β2 subunits may have potential for developing new treatments for PD.
Collapse
Affiliation(s)
- Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Guang Zhou Road 300, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ricci G, Astolfi A, Remondini D, Cipriani F, Formica S, Dondi A, Pession A. Pooled genome-wide analysis to identify novel risk loci for pediatric allergic asthma. PLoS One 2011; 6:e16912. [PMID: 21359210 PMCID: PMC3040188 DOI: 10.1371/journal.pone.0016912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.
Collapse
Affiliation(s)
- Giampaolo Ricci
- Pediatric Unit, Department of Gynecologic, Obstetric and Pediatric Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hosur V, Loring RH. α4β2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol 2011; 79:167-74. [PMID: 20943775 DOI: 10.1124/mol.110.066381] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite evidence that smoking confers protection against neurological disorders, how and whether specific nicotinic receptor subtypes are involved is unknown. We reported previously that nicotine suppresses constitutive nuclear factor κB (NF-κB) activity and thereby proinflammatory cytokine (PIC) production in SHEP1 cells stably transfected with α4β2 nicotinic receptors. Here, we report the anti-inflammatory effects of nicotine pretreatment in lipopolysaccharide (LPS)-stimulated SHEP1 cells. Nicotine (100-300 nM, concentrations found in smoker's blood) blocked LPS-induced NF-κB translocation and production of PICs interleukin (IL)-1β and IL-6 but only partially blocked inhibitor of nuclear factor-κBα (IκBα) phosphorylation. These effects were exclusively in cells transfected with α4β2 receptors but not in wild types. The cell-permeable calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, the adenylate cyclase stimulant forskolin, and a specific protein kinase A (PKA) inhibitor PKI 14-22-amide failed to block the effect of nicotine on LPS-induced NF-κB translocation and IκBα phosphorylation. However, the effects of nicotine on NF-κB activity were significantly blocked by the highly specific janus kinase 2 (JAK2) inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG-490) and the signal transducer and activator of transcription 3 (STAT3) inhibitor 2-hydroxy-4-[[[[(4-methylphenyl)sulfonyl]oxy]acetyl]amino]-benzoic acid (NSC74859). These findings reveal a calcium- and cAMP-PKA-independent signaling cascade and suggest a role for JAK2-STAT3 transduction in α4β2-mediated attenuation of LPS-induced inflammation. Anti-inflammatory effects of nicotine may therefore be mediated through α4β2 receptors, the predominant high-affinity binding sites for nicotine in the central nervous system, in addition to the better-established α7 receptors.
Collapse
Affiliation(s)
- Vishnu Hosur
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Flatscher-Bader T, Harrison E, Matsumoto I, Wilce PA. Genes associated with alcohol abuse and tobacco smoking in the human nucleus accumbens and ventral tegmental area. Alcohol Clin Exp Res 2010; 34:1291-302. [PMID: 20477762 DOI: 10.1111/j.1530-0277.2010.01207.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The incidence of alcohol and tobacco co-abuse is as high as 80%. The molecular mechanism underlying this comorbidity is virtually unknown, but interactions between these drugs have important implications for the development of and recovery from drug dependence. METHODS We investigated the effects of chronic tobacco and alcohol abuse and the interaction of the 2 behaviors on global gene expression in the human nucleus accumbens using cDNA microarrays and 20 alcoholic and control cases, with and without smoking comorbidity. Changes in gene expression were established by factorial ANOVA. Unsupervised hierarchical clustering was utilized to probe the strength of the data sets. Applying real-time PCR differential expression of candidate genes was confirmed in the nucleus accumbens and explored further in a second core region of the mesolimbic system, the ventral tegmental area. RESULTS Subjecting the data sets derived from microarray gene expression screening to unsupervised hierarchical clustering tied the cases into distinct groups. When considering all alcohol-responsive genes, alcoholics were separated from nonalcoholics with the exception of 1 control case. All smokers were distinguished from nonsmokers based on similarity in expression of smoking-sensitive genes. In the nucleus accumbens, alcohol-responsive genes were associated with transcription, lipid metabolism, and signaling. Smoking-sensitive genes were predominantly assigned to functional groups concerned with RNA processing and the endoplasmic reticulum. Both drugs influenced the expression of genes involved in matrix remodeling, proliferation, and cell morphogenesis. Additionally, a gene set encoding proteins involved in the canonical pathway "regulation of the actin cytoskeleton" was induced in response to alcohol and tobacco co-abuse and included. Alcohol abuse elevated the expression of candidate genes in this pathway in the nucleus accumbens and ventral tegmental area, while smoking comorbidity blunted this induction in the ventral tegmental area. CONCLUSIONS The region-specific modulation of alcohol-sensitive gene expression by smoking may have important consequences for alcohol-induced aberrations within the mesolimbic dopaminergic system.
Collapse
|
21
|
Singh K, Singh S, Singhal NK, Sharma A, Parmar D, Singh MP. Nicotine- and caffeine-mediated changes in gene expression patterns of MPTP-lesioned mouse striatum: Implications in neuroprotection mechanism. Chem Biol Interact 2010; 185:81-93. [DOI: 10.1016/j.cbi.2010.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/27/2010] [Accepted: 03/07/2010] [Indexed: 01/21/2023]
|