1
|
Zayed M, Kim YC, Jeong BH. Assessment of the therapeutic potential of Hsp70 activator against prion diseases using in vitro and in vivo models. Front Cell Dev Biol 2024; 12:1411529. [PMID: 39105172 PMCID: PMC11298377 DOI: 10.3389/fcell.2024.1411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Prion diseases are deadly neurodegenerative disorders in both animals and humans, causing the destruction of neural tissue and inducing behavioral manifestations. Heat shock proteins (Hsps), act as molecular chaperones by supporting the appropriate folding of proteins and eliminating the misfolded proteins as well as playing a vital role in cell signaling transduction, cell cycle, and apoptosis control. SW02 is a potent activator of Hsp 70 kDa (Hsp70). Methods In the current study, the protective effects of SW02 against prion protein 106-126 (PrP106-126)-induced neurotoxicity in human neuroblastoma cells (SH-SY5Y) were investigated. In addition, the therapeutic effects of SW02 in ME7 scrapie-infected mice were evaluated. Results The results showed that SW02 treatment significantly increased Hsp70 mRNA expression levels and Hsp70 ATPase activity (p < 0.01). SW02 also significantly inhibited cytotoxicity and apoptosis induced by PrP106-126 (p < 0.01) and promoted neurite extension. In vivo, intraperitoneal administration of SW02 did not show a statistically significant difference in survival time (p = 0.16); however, the SW02-treated group exhibited a longer survival time of 223.6 ± 6.0 days compared with the untreated control group survival time of 217.6 ± 5.4 days. In addition, SW02 reduced the PrPSc accumulation in ME7 scrapie-infected mice at 5 months post-injection (p < 0.05). A significant difference was not observed in GFAP expression, an astrocyte marker, between the treated and untreated groups. Conclusion In conclusion, the potential therapeutic role of the Hsp70 activator SW02 was determined in the present study and may be a novel and effective drug to mitigate the pathologies of prion diseases and other neurodegenerative diseases. Further studies using a combination of two pharmacological activators of Hsp70 are required to maximize the effectiveness of each intervention.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Armocida D, Busceti CL, Biagioni F, Fornai F, Frati A. The Role of Cellular Prion Protein in Glioma Tumorigenesis Could Be through the Autophagic Mechanisms: A Narrative Review. Int J Mol Sci 2023; 24:ijms24021405. [PMID: 36674920 PMCID: PMC9865539 DOI: 10.3390/ijms24021405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.
Collapse
Affiliation(s)
- Daniele Armocida
- Department of Human Neuroscience, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: ; Tel.: +39-39-3287-4496
| | - Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
3
|
Physiological role of Prion Protein in Copper homeostasis and angiogenic mechanisms of endothelial cells. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The Prion Protein (PrP) is mostly known for its role in prion diseases, where its misfolding and aggregation can cause fatal neurodegenerative conditions such as the bovine spongiform encephalopathy and human Creutzfeldt–Jakob disease. Physiologically, PrP is involved in several processes including adhesion, proliferation, differentiation and angiogenesis, but the molecular mechanisms behind its role remain unclear. PrP, due to its well-described structure, is known to be able to regulate copper homeostasis; however, copper dyshomeostasis can lead to developmental defects. We investigated PrP-dependent regulation of copper homeostasis in human endothelial cells (HUVEC) using an RNA-interference protocol. PrP knockdown did not influence cell viability in silenced HUVEC (PrPKD) compared to control cells, but significantly increased PrPKD HUVEC cells sensitivity to cytotoxic copper concentrations. A reduction of PrPKD cells reductase activity and copper ions transport capacity was observed. Furthermore, PrPKD-derived spheroids exhibited altered morphogenesis and their derived cells showed a decreased vitality 24 and 48 hours after seeding. PrPKD spheroid-derived cells also showed disrupted tubulogenesis in terms of decreased coverage area, tubule length and total nodes number on matrigel, preserving unaltered VEGF receptors expression levels. Our results highlight PrP physiological role in cellular copper homeostasis and in the angiogenesis of endothelial cells.
Collapse
|
4
|
Kim SW, Moon JH, Park SY. Activation of autophagic flux by epigallocatechin gallate mitigates TRAIL-induced tumor cell apoptosis via down-regulation of death receptors. Oncotarget 2018; 7:65660-65668. [PMID: 27582540 PMCID: PMC5323182 DOI: 10.18632/oncotarget.11597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/13/2016] [Indexed: 01/04/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea. Recent studies have reported that EGCG can inhibit TRAIL-induced apoptosis and activate autophagic flux in cancer cells. However, the mechanism behind these processes is unclear. The present study found that EGCG prevents tumor cell death by antagonizing the TRAIL pathway and activating autophagy flux. Our results indicate that EGCG dose-dependently inhibits TRAIL-induced apoptosis and decreases the binding of death receptor 4 and 5 (DR4 and 5) to TRAIL. In addition, EGCG activates autophagy flux, which is involved in the inhibition of TRAIL cell death. We confirmed that the protective effect of EGCG can be reversed using genetic and pharmacological tools through re-sensitization to TRAIL. The inhibition of autophagy flux affects not only the re-sensitization of tumor cells to TRAIL, but also the restoration of death receptor proteins. This study demonstrates that EGCG inhibits TRAIL-induced apoptosis through the manipulation of autophagic flux and subsequent decrease in number of death receptors. On the basis of these results, we suggest further consideration of the use of autophagy activators such as EGCG in combination anti-tumor therapy with TRAIL.
Collapse
Affiliation(s)
- Sung-Wook Kim
- Biosafety Research Institute, Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
5
|
Ramljak S, Herlyn H, Zerr I. Cellular Prion Protein (PrP c) and Hypoxia: True to Each Other in Good Times and in Bad, in Sickness, and in Health. Front Cell Neurosci 2016; 10:292. [PMID: 28066187 PMCID: PMC5165248 DOI: 10.3389/fncel.2016.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined. Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal cerebral ischemia are strongly supported. Conversely, increasing evidence indicates detrimental effects of increased PrPc expression on cancer progression, another condition accompanied by low oxygen tensions. A switch between anaerobic and aerobic metabolism characterizes both conditions. A cellular process that might unite both is glycolysis. Putative role of PrPc in stimulation of glycolysis in times of need is indeed thought provoking. A significance of astrocytic PrPc expression for neuronal survival under hypoxic conditions and possible association of PrPc with the astrocyte-neuron lactate shuttle is considered. We posit PrPc-induced lactate production via transactivation of lactate dehydrogenase A by hypoxia inducible factor 1α as an important factor for survival of both neurons and tumor cells in hypoxic microenvironment. Concomitantly, we discuss a cross-talk between Wnt/β-catenin and PI3K/Akt signaling pathways in executing PrPc-induced activation of glycolysis. Finally, we would like to emphasize that we see a great potential in joining expertise from both fields, neuroscience and cancer research in revealing the mechanisms underlying hypoxia-related pathologies. PrPc may prove focal point for future research.
Collapse
Affiliation(s)
| | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases Göttingen, Germany
| |
Collapse
|
6
|
Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation. Oncotarget 2016; 7:4356-68. [PMID: 26517672 PMCID: PMC4826210 DOI: 10.18632/oncotarget.5374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 12/15/2022] Open
Abstract
Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL.
Collapse
|
7
|
Huang X, Yang K, Zhang Y, Wang Q, Li Y. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation. Metab Brain Dis 2016; 31:435-44. [PMID: 26738727 DOI: 10.1007/s11011-015-9782-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023]
Abstract
Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kaiyong Yang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi Zhang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiang Wang
- Department of Preventive Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yongjin Li
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
8
|
da Luz MHM, Glezer I, Xavier AM, da Silva MAP, Pino JMV, Zamith TP, Vieira TF, Antonio BB, Antunes HKM, Martins VR, Lee KS. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein. Neurochem Res 2016; 41:1691-9. [DOI: 10.1007/s11064-016-1885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
|
9
|
Park JY, Jeong JK, Lee JH, Moon JH, Kim SW, Lee YJ, Park SY. Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment. Oncotarget 2016; 6:5342-53. [PMID: 25742790 PMCID: PMC4467153 DOI: 10.18632/oncotarget.3028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022] Open
Abstract
Hypoxia decreases cytotoxic responses to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. Cellular prion protein (PrPc) is regulated by HIF-1α in neurons. We hypothesized that PrPc is involved in hypoxia-mediated resistance to TRAIL-induced apoptosis. We found that hypoxia induced PrPc protein and inhibited TRAIL-induced apoptosis. Thus silencing of PrPc increased TRAIL-induced apoptosis under hypoxia. Overexpression of PrPc protein using an adenoviral vector inhibited TRAIL-induced apoptosis. In xenograft model in vivo, shPrPc transfected cells were more sensitive to TRAIL-induced apoptosis than in shMock transfected cells. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia.
Collapse
Affiliation(s)
- Jin-Young Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Jae-Kyo Jeong
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Sung-Wook Kim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| |
Collapse
|
10
|
Kim SW, Park SY. Hypoxia‑mediated activation of autophagic flux inhibits apoptosis of keratinocytes via blocking tumor necrosis factor‑related apoptosis‑inducing ligand. Mol Med Rep 2015; 13:805-10. [PMID: 26648440 DOI: 10.3892/mmr.2015.4592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) is toxic against transformed tumor cells. Cornification is the terminal differentiation of keratinocytes and a specific form of programmed cell death caused by TRAIL that occurs in keratinocytes. Apoptosis can also be triggered when TRAIL induces expression of keratinocyte differentiation markers. The present study reported that hypoxia inhibits TRAIL‑induced apoptosis due to autophagic flux. It is well known that hypoxia activates autophagy in keratinocytes and reduces p62 protein levels. The present study demonstrated that hypoxia inhibited TRAIL‑mediated apoptosis and induced autophagic flux in HaCaT cells. In addition, autophagic flux‑inactivating reagents, including 3‑methyladenine and chloroquine, increased the TRAIL sensitivity of HaCaT cells exposed to hypoxia. In conclusion, these results indicated that inactivating autophagy increased TRAIL sensitivity in hypoxic HaCaT cells. Autophagy inhibitors may be beneficial in therapies using TRAIL against skin cancers.
Collapse
Affiliation(s)
- Sung-Wook Kim
- Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| | - Sang-Youel Park
- Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| |
Collapse
|
11
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
12
|
Park YG, Park SY. Gingerol prevents prion protein-mediated neuronal toxicity by regulating HIF prolyl hydroxylase 2 and prion protein. Int J Mol Med 2014; 34:1268-76. [PMID: 25231392 PMCID: PMC4199419 DOI: 10.3892/ijmm.2014.1936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are a family of progressive neurodegenerative disorders, which are fatal in the majority of cases and affect both humans and domestic animals. Prion protein (PrP) (106–126) retains the neurotoxic properties of the entire pathological PrPsc and it is generally used as a reasonable model to study the mechanisms responsible for prion diseases. In our previous studies, we demonstrated that hypoxia-inducible factor (HIF)-1α is involved in the gingerol-mediated protection of neuronal cells. HIF mediates cellular adaptations to low oxygen. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an oxygen sensor that hydroxylates the HIF-α-subunit, promoting its proteasomal degradation under normoxic conditions. Thus, in the present study we wished to determine whether gingerol inhibits the catalytic activity of PHD2 and prevents HIF-1α protein proteasomal degradation, thereby preventing the occurrence of PrP (106–126)-induced neuronal apoptosis. We used the pharmacological inhibition of PHD2 by dimethyloxalylglycine (DMOG) or deferoxamine (DFO) and the genetic inhibition of HIF-1α by HIF-1α small interfering RNA (siRNA) to block the effects of gingerol against PrP (106–126)-induced neurotoxicity. Our results demonstrated that gingerol prevented PrP (106–126)-induced neuronal apoptosis by upregulating HIF-1α and inhibiting the catalytic activity of PHD2 under normoxic conditions. Moreover, the protective effects of gingerol against PrP (106–126)-induced neuronal apoptosis were associated with the upregulation of the expression of cellular prion protein (PrPc). In conclusion, our results indicate that gingerol has therapeutic potential for use in the treatment or prevention of prion diseases, and its inhibitory effects on the catalytic activity of PHD2 may be of clinical benefit.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
13
|
Overcoming hypoxic-resistance of tumor cells to TRAIL-induced apoptosis through melatonin. Int J Mol Sci 2014; 15:11941-56. [PMID: 25000265 PMCID: PMC4139822 DOI: 10.3390/ijms150711941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022] Open
Abstract
A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.
Collapse
|
14
|
Park YG, Moon JH, Park SY. Lactoferrin from bovine colostrum regulates prolyl hydroxylase 2 activity and prevents prion protein-mediated neuronal cell damage via cellular prion protein. Neuroscience 2014; 274:187-97. [PMID: 24875174 DOI: 10.1016/j.neuroscience.2014.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/30/2014] [Accepted: 05/18/2014] [Indexed: 11/24/2022]
Abstract
Prion disorders are associated with the conversion of normal cellular prion protein (PrPc) to the abnormal scrapie isoform of prion protein (PrPsc). Recent studies have shown that expression of normal PrPc is regulated by hypoxia-inducible factor-1 alpha (HIF-1α), and that lactoferrin increases full-length PrPc on the cell surface. Lactoferrin is an 80-kDa iron-binding glycoprotein with various biological activities, including iron-chelating ability. HIF-1α and the associated ubiquitin-proteasome pathway are regulated by HIF prolyl-hydroxylases 2 (PHD2). We hypothesized that lactoferrin regulates PHD2 expression and enzymatic activity, and the PHD2 regulation promotes HIF-1α stability and prevention of neuronal cell death mediated by prion protein (PrP) residues (106-126). Lactoferrin prevented PrP (106-126)-induced neurotoxicity by the induction of PrPc expression via promoting HIF-1α stability in neuronal cells. Our results demonstrated that lactoferrin prevented PrP (106-126)-induced neurotoxicity via the up-regulation of HIF-1α stability determined by PHD2 expression and enzymatic activity. These findings suggest that possible therapies such as PHD2 inhibition, or promotion of lactoferrin secretion, may have clinical benefits in neurodegenerative diseases, including prion disease.
Collapse
Affiliation(s)
- Y-G Park
- Biosafty Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - J-H Moon
- Biosafty Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - S-Y Park
- Biosafty Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
15
|
Moon MH, Jeong JK, Lee YJ, Park SY. FTY720 protects neuronal cells from damage induced by human prion protein by inactivating the JNK pathway. Int J Mol Med 2013; 32:1387-93. [PMID: 24142108 DOI: 10.3892/ijmm.2013.1528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/08/2013] [Indexed: 11/06/2022] Open
Abstract
Prion diseases affect the central nervous system (CNS) in humans and animals, and are associated with the conversion of the cellular prion protein (PrPC) to the misfolded isoform (PrPSc). FTY720, an immune modulator and synthetic analogue of sphingosine-1-phosphate (S1P), activates S1P receptors and has been shown to be effective in experimental models of transplantation and autoimmunity, including multiple sclerosis. Whereas the immune modulatory functions of FTY720 have been extensively investigated, the other functions of FTY720 are not yet well understood. In this study, we investigated the effects of FTY720 phosphate (FTY720-p) on prion protein-mediated neuronal cell death, as well as its effects on intracellular apoptotic pathways. Treatment with FTY720-p protected neuronal cells from synthetic human prion protein peptide [PrP (106‑126)]-mediated damage and prevented mitochondrial dysfunction by inhibiting the activation of c-jun N-terminal kinase. Moreover, FTY720-p prevented the PrP (106‑126)-induced reduction in mitochondrial potential, the translocation of Bax to the mitochondria and the release of cytochrome c. To the best of our knowledge, this study is the first to demonstrate the effects of FTY720 on prion protein-mediated neurotoxicity and to suggest that FTY720 has therapeutic potential in prion diseases.
Collapse
Affiliation(s)
- Myung-Hee Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | | | | | | |
Collapse
|
16
|
JEONG JAEKYO, PARK SANGYOUEL. HIF-1α-induced β-catenin activation prevents prion-mediated neurotoxicity. Int J Mol Med 2013; 32:931-7. [DOI: 10.3892/ijmm.2013.1457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 11/06/2022] Open
|
17
|
Didonna A. Prion protein and its role in signal transduction. Cell Mol Biol Lett 2013; 18:209-30. [PMID: 23479001 PMCID: PMC6275729 DOI: 10.2478/s11658-013-0085-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/18/2013] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrP(Sc)). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrP(C)) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the "protein-only" hypothesis for the first time, considerable effort has been put into defining the role played by PrP(C) in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrP(C) in signal transduction.
Collapse
Affiliation(s)
- Alessandro Didonna
- Davee Department of Neurology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Yuan F, Yang L, Zhang Z, Wu W, Zhou X, Yin X, Zhao D. Cellular prion protein (PrPC) of the neuron cell transformed to a PK-resistant protein under oxidative stress, comprising main mitochondrial damage in prion diseases. J Mol Neurosci 2013; 51:219-24. [PMID: 23715697 PMCID: PMC3739867 DOI: 10.1007/s12031-013-0008-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Prion diseases characterize a category of fatal neurodegenerative diseases. Although reports have increasingly shown that oxidative stress plays an important role in the progression of prion diseases, little is known about whether oxidative stress is a cause or a consequence of a prion disease. The mechanism of prion disease development also remains unclear. The purpose of this study was to investigate three things: the possible mechanisms of neuron cell damage, the conformation of anti-protease K (PK) PrPSc, and the role of oxidative stress in the progression of prion diseases. The study results demonstrated that normal PrPC transformed into a PK-resistant protein under oxidative stress in the presence of PrP106–126. Further, the protein misfolding cyclic amplification procedure may have accelerated this process. Mitochondrial damage and dysfunction in prion disease progression were also observed in this study. Our results suggested that neuron cell damage, and particularly mitochondrial damage, was induced by oxidative stress. This damage may be the initial cause of a given prion disease.
Collapse
Affiliation(s)
- Fangzhong Yuan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhuming Zhang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Wenyu Wu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
19
|
Transcriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1α) leads to PRNP expression and neuroprotection from toxic prion peptide. Biochem Biophys Res Commun 2012; 429:93-8. [PMID: 23131565 DOI: 10.1016/j.bbrc.2012.10.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 01/22/2023]
Abstract
Our previous study demonstrated that hypoxia-inducible factor-1 (HIF-1)-mediated neuroprotective effects are related to cellular prion protein (PrPc) gene (PRNP) regulation under hypoxic conditions. However, the mechanism of HIF-1α-mediated PRNP gene regulation in prion-mediated neurodegenerative disorders is not clear. Transcription factor specific protein 1 (SP1) is necessary for PRNP transcription initiation, and SP1 gene expression is regulated through HIF-1α activation under hypoxic conditions. Thus, we hypothesized that HIF-1α-mediated neuroprotection is related to the SP1 transcription pathway as a result of PRNP gene regulation. Inhibition of SP1 expression blocked the HIF-1α-mediated protective effect against prion-mediated neurotoxicity. Also, knockdown of HIF-1α induced downregulation of SP1 expression and sensitivity to prion-mediated neurotoxicity, whereas upregulation of SP1 transcriptional activity lead to protection against prion-mediated neuron cell death and PRNP gene expression even in HIF-1α depleted cells. This report is the first study demonstrating that HIF-1α-mediated SP1 expression regulates PrPc transcription, and upregulation of SP1 induced by HIF-1α plays a key role in protection from prion-mediated neurotoxicity. These studies suggest that transcription factor SP1 may be involved in the pathogenesis of prion diseases and also may be a potential therapeutic option for neurodegeneration caused by the pathological prion protein, PrPsc.
Collapse
|
20
|
PARK YANGGYU, JEONG JAEKYO, MOON MYUNGHEE, LEE JUHEE, LEE YOUJIN, SEOL JAEWON, KIM SHANGJIN, KANG SEOGJIN, PARK SANGYOUEL. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cells via inhibition of Bax translocation. Int J Mol Med 2012; 30:1069-74. [DOI: 10.3892/ijmm.2012.1087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/28/2012] [Indexed: 11/05/2022] Open
|
21
|
Sorice M, Mattei V, Tasciotti V, Manganelli V, Garofalo T, Misasi R. Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 2012; 6:354-8. [PMID: 22842913 DOI: 10.4161/pri.20479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular form of prion protein (PrP (c)) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named "rafts." The association with these specialized portions of the cell plasma membrane is required for conversion of PrP (c) to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrP (c) is reported to be a plasma membrane protein, however several studies have revealed PrP (c) as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrP (c), as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrP (c) can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrP (c) may play a role in the multimolecular signaling complex associated with cell apoptosis Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Jeong JK, Seo JS, Moon MH, Lee YJ, Seol JW, Park SY. Hypoxia-inducible factor-1 α regulates prion protein expression to protect against neuron cell damage. Neurobiol Aging 2011; 33:1006.e1-10. [PMID: 22036844 DOI: 10.1016/j.neurobiolaging.2011.09.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 02/05/2023]
Abstract
The human prion protein fragment, PrP (106-126), may contain a majority of the pathological features associated with the infectious scrapie isoform of PrP, known as PrP(Sc). Based on our previous findings that hypoxia protects neuronal cells from PrP (106-126)-induced apoptosis and increases cellular prion protein (PrP(C)) expression, we hypothesized that hypoxia-related genes, including hypoxia-inducible factor-1 alpha (HIF-1α), may regulate PrP(C) expression and that these genes may be involved in prion-related neurodegenerative diseases. Hypoxic conditions are known to elicit cellular responses designed to improve cell survival through adaptive processes. Under normoxic conditions, a deferoxamine-mediated elevation of HIF-1α produced the same effect as hypoxia-inhibited neuron cell death. However, under hypoxic conditions, doxorubicin-suppressed HIF-1α attenuated the inhibitory effect on neuron cell death mediated by PrP (106-126). Knock-down of HIF-1α using lentiviral short hairpin (sh) RNA-induced downregulation of PrP(C) mRNA and protein expression under hypoxic conditions, and sensitized neuron cells to prion peptide-mediated cell death even in hypoxic conditions. In PrP(C) knockout hippocampal neuron cells, hypoxia increased the HIF-1α protein but the cells did not display the inhibitory effect of prion peptide-induced neuron cell death. Adenoviruses expressing the full length Prnp gene (Ad-Prnp) were utilized for overexpression of the Prnp gene in PrP(C) knockout hippocampal neuron cells. Adenoviral transfection of PrP(C) knockout cells with Prnp resulted in the inhibition of prion peptide-mediated cell death in these cells. This is the first report demonstrating that expression of normal PrP(C) is regulated by HIF-1α, and PrP(C) overexpression induced by hypoxia plays a pivotal role in hypoxic inhibition of prion peptide-induced neuron cell death. These results suggest that hypoxia-related genes, including HIF-1α, may be involved in the pathogenesis of prion-related diseases and as such may be a therapeutic target for prion-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Center for Healthcare Technology Development, Korea Zoonoses Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Cooper I, Cohen-Kashi Malina K, Cagnotto A, Bazzoni G, Salmona M, Teichberg VI. Interactions of the prion peptide (PrP 106-126) with brain capillary endothelial cells: coordinated cell killing and remodeling of intercellular junctions. J Neurochem 2011; 116:467-75. [PMID: 20804519 DOI: 10.1111/j.1471-4159.2010.06934.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We studied here the interactions of PrP 106-126, a peptide corresponding to the prion protein (PrP) amyloidogenic region, with a blood-brain barrier in vitro model consisting of confluent porcine brain endothelial cells (PBEC). PrP 106-126 interacted selectively with PBEC via their luminal side, and caused cumulative cell death, as shown by lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, Caspase 3 induction and direct cell counting. In addition, PrP 106-126, but not its corresponding scrambled peptide, produced a 50% reduction of the trans-endothelial electrical resistance, while the PBEC maintained confluency. This process was accompanied by a 23% increase of PBEC average size and the selective disappearance from the cell borders of the junction proteins occludin, claudin-5 and VE-cadherin (but not ZO-1), as evaluated by immunostaining. These results fit with a mechanism by which PrP 106-126 initiates a coordinated cell killing process ultimately causing the remaining cells to undergo a coordinated remodeling of the intercellular junctions and an expansion of their cell territory.
Collapse
Affiliation(s)
- Itzik Cooper
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
24
|
Li QQ, Sun YP, Ruan CP, Xu XY, Ge JH, He J, Xu ZD, Wang Q, Gao WC. Cellular prion protein promotes glucose uptake through the Fyn-HIF-2α-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci 2011; 102:400-6. [PMID: 21265952 DOI: 10.1111/j.1349-7006.2010.01811.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellular prion protein (PrPc) is a glycosylphosphatidylinositol-anchored membrane protein that has various physical functions, including protection against apoptotic and oxidative stress, cellular uptake of copper ions, transmembrane signaling, and adhesion to the extracellular matrix. In this study, we show that PrPc is highly expressed in colorectal adenocarcinomas. Transcriptome profiling of PrPc-depleted DLD-1 cells revealed downregulation of glucose transporter 1 (Glut1). PrPc is shown to be involved in regulating Glut1 expression through the Fyn-HIF-2α pathway. As Glut1 is the natural transporter of glucose and is required for the high glycolytic rate seen in colorectal tumors, silencing of PrPc reduced the proliferation and survival rate of colorectal cancer cells in vitro. In vivo, knockdown of PrPc by hydrodynamic injection with a cocktail of PrPc-shRNA-encoding plasmids also inhibited tumorigenicity in a xenograft model in nude mice. In summary, our data characterize a novel molecular mechanism that links PrPc expression to the regulation of glycolysis. Targeting PrPc will therefore be a promising strategy to overcome the growth and survival advantage in colorectal tumors.
Collapse
Affiliation(s)
- Qing-Quan Li
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jeong JK, Seol JW, Moon MH, Seo JS, Lee YJ, Kim JS, Park SY. Cellular cholesterol enrichment prevents prion peptide-induced neuron cell damages. Biochem Biophys Res Commun 2010; 401:516-20. [PMID: 20875400 DOI: 10.1016/j.bbrc.2010.09.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/21/2010] [Indexed: 11/29/2022]
Abstract
The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be regulated by cholesterol homeostasis. The effects of cholesterol balance on prion protein-mediated neurotoxicity and ROS (reactive oxygen species) generation were the focus of this study. Cholesterol treatment inhibited PrP (106-126)-induced neuronal cell death and ROS generation in SH-SY5Y neuroblastoma cells. In addition, the PrP (106-126)-mediated increase of p53, p-p38, p-ERK and the decrease of Bcl-2 were blocked by cholesterol treatment. These results indicated that cellular cholesterol enrichment is a key regulator of PrP-106-126-mediated oxidative stress and neurotoxicity. Taken together, the results of this study suggest that modulation of cellular cholesterol appears to prevent the neuronal cell death caused by prion peptides.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Chonbuk National University, Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Jeonju, Jeonbuk 561-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Jeong JK, Moon MH, Seo JS, Seol JW, Park SY, Lee YJ. Hypoxia inducing factor-1α regulates tumor necrosis factor-related apoptosis-inducing ligand sensitivity in tumor cells exposed to hypoxia. Biochem Biophys Res Commun 2010; 399:379-83. [DOI: 10.1016/j.bbrc.2010.07.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
27
|
Merz H, Kaehler C, Hoefig KP, Branke B, Uckert W, Nadrowitz R, Sabine-Cerny-Reiterer, Herrmann H, Feller AC, Valent P. Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single 'hit' and cooperate in producing a mastocytosis-like disease in mice. Oncotarget 2010; 1:104-119. [PMID: 21297223 PMCID: PMC3157709 DOI: 10.18632/oncotarget.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/17/2010] [Indexed: 02/06/2023] Open
Abstract
Mast cell neoplasms are characterized by abnormal growth and focal accumulation of mast cells (MC) in one or more organs. Although several cytokines, including stem cell factor (SCF) and interleukin-9 (IL-9) have been implicated in growth of normal MC, little is known about pro-oncogenic molecules and conditions triggering differentiation and growth of MC far enough to lead to the histopathological picture of overt mastocytosis. The anaplastic lymphoma kinase (ALK) has recently been implicated in growth of neoplastic cells in malignant lymphomas. Here, we describe that transplantation of NPM-ALK-transplanted mouse bone marrow progenitors into lethally irradiated IL-9 transgenic mice not only results in lymphoma-formation, but also in the development of a neoplastic disease exhibiting histopathological features of systemic mastocytosis, including multifocal dense MC-infiltrates, occasionally with devastating growth in visceral organs. Transplantation of NPM-ALK-transduced progenitors into normal mice or maintenance of IL-9-transgenic mice without NPM-ALK each resulted in MC hyperplasia, but not in mastocytosis. Neoplastic MC in mice not only displayed IL-9, but also the IL-9 receptor, and the same was found to hold true for human neoplastic MC. Together, our data show that neoplastic MC express IL-9 receptors, that IL-9 and NPM-ALK upregulate MC-production in vivo, and that both'hits' act in concert to induce a mastocytosis-like disease in mice. These data may have pathogenetic and clinical implications and fit well with the observation that neoplastic MC in advanced SM strongly express NPM and multiple "lymphoid" antigens including CD25 and CD30.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Bone Marrow Transplantation
- Cell Line, Tumor
- Female
- Flow Cytometry
- Humans
- Hyperplasia
- Interleukin-2 Receptor alpha Subunit/analysis
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Ki-1 Antigen/analysis
- Male
- Mast Cells/immunology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mastocytosis, Systemic/metabolism
- Mastocytosis, Systemic/pathology
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nucleophosmin
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Polymerase Chain Reaction
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Stem Cell Factor/metabolism
Collapse
Affiliation(s)
- Hartmut Merz
- Department of Pathology, Medical University of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christian Kaehler
- Department of Pathology, Medical University of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Kai P. Hoefig
- Institute for Molecular Immunology, Helmholtz Zentrum München, Germany
| | - Biggi Branke
- Department of Pathology, Medical University of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Wolfgang Uckert
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Roger Nadrowitz
- Institute for Radiotherapy, Medical University of Schleswig-Holstein, Campus Lübeck, Luebeck, Germany
| | - Sabine-Cerny-Reiterer
- Department of Medicine I, Division of Hematology, Medical University of Vienna, Austria
| | | | - Alfred C. Feller
- Department of Pathology, Medical University of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Peter Valent
- Department of Medicine I, Division of Hematology, Medical University of Vienna, Austria
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| |
Collapse
|