1
|
Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F, Marsh-Amstrong N, Li W, Vidal-Sanz M, Agudo-Barriuso M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 2023; 44:226-248. [PMID: 36594396 PMCID: PMC9841181 DOI: 10.24272/j.issn.2095-8137.2022.308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Nicholas Marsh-Amstrong
- Department of Ophthalmology and Vision Science, University of California, Davis, CA 95817, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| |
Collapse
|
2
|
Gaitanou M, Segklia K, Matsas R. Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
3
|
Himori N, Maruyama K, Yamamoto K, Yasuda M, Ryu M, Omodaka K, Shiga Y, Tanaka Y, Nakazawa T. Critical neuroprotective roles of heme oxygenase-1 induction against axonal injury-induced retinal ganglion cell death. J Neurosci Res 2014; 92:1134-42. [PMID: 24799032 DOI: 10.1002/jnr.23398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/10/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
Although axonal damage induces significant retinal ganglion cell (RGC) death, small numbers of RGCs are able to survive up to 7 days after optic nerve crush (NC) injury. To develop new treatments, we set out to identify patterns of change in the gene expression of axonal damage-resistant RGCs. To compensate for the low density of RGCs in the retina, we performed retrograde labeling of these cells with 4Di-10ASP in adult mice and 7 days after NC purified the RGCs with fluorescence-activated cell sorting. Gene expression in the cells was determined with a microarray, and the expression of Ho-1 was determined with quantitative PCR (qPCR). Changes in protein expression were assessed with immunohistochemistry and immunoblotting. Additionally, the density of Fluoro-gold-labeled RGCs was counted in retinas from mice pretreated with CoPP, a potent HO-1 inducer. The microarray and qPCR analyses showed increased expression of Ho-1 in the post-NC RGCs. Immunohistochemistry also showed that HO-1-positive cells were present in the ganglion cell layer (GCL), and cell counting showed that the proportion of HO-1-positive cells in the GCL rose significantly after NC. Seven days after NC, the number of RGCs in the CoPP-treated mice was significantly higher than in the control mice. Combined pretreatment with SnPP, an HO-1 inhibitor, suppressed the neuroprotective effect of CoPP. These results reflect changes in HO-1 activity to RGCs that are a key part of RGC survival. Upregulation of HO-1 signaling may therefore be a novel therapeutic strategy for glaucoma.
Collapse
Affiliation(s)
- Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tsioras K, Papastefanaki F, Politis PK, Matsas R, Gaitanou M. Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 2013; 8:e82172. [PMID: 24312406 PMCID: PMC3842983 DOI: 10.1371/journal.pone.0082172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
5
|
Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci 2013; 33:8172-84. [PMID: 23658157 DOI: 10.1523/jneurosci.0119-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Abelson helper integration site-1 (AHI1) gene result in N-terminal Ahi1 fragments and cause Joubert syndrome, an autosomal recessive brain malformation disorder associated with delayed development. How AHI1 mutations lead to delayed development remains unclear. Here we report that full-length, but not N-terminal, Ahi1 binds Hap1, a huntingtin-associated protein that is essential for the postnatal survival of mice and that this binding is regulated during neuronal differentiation by nerve growth factor. Nerve growth factor induces dephosphorylation of Hap1A and decreases its association with Ahi1, correlating with increased Hap1A distribution in neurite tips. Consistently, Ahi1 associates with phosphorylated Hap1A in cytosolic, but not in synaptosomal, fractions isolated from mouse brain, suggesting that Ahi1 functions mainly in the soma of neurons. Mass spectrometry analysis of cytosolic Ahi1 immunoprecipitates reveals that Ahi1 also binds Cend1 (cell cycle exit and neuronal differentiation protein 1)/BM88, a neuronal protein that mediates neuronal differentiation and is highly expressed in postnatal mouse brain. Loss of Ahi1 reduces the levels of Cend1 in the hypothalamus of Ahi1 KO mice, which show retarded growth during postnatal days. Overexpressed Ahi1 can stabilize Cend1 in cultured cells. Furthermore, overexpression of Cend1 can rescue the neurite extension defects of hypothalamic neurons from Ahi1 KO mice. Our findings suggest that Cend1 is involved in Ahi1-associated hypothalamic neuronal differentiation in early development, giving us fresh insight into the mechanism behind the delayed development in Joubert syndrome.
Collapse
|
6
|
Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013; 226:305-314. [PMID: 23083681 DOI: 10.1016/j.atherosclerosis.2012.09.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/22/2012] [Accepted: 09/14/2012] [Indexed: 02/09/2023]
Abstract
The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
7
|
Metabolic stress response implicated in diabetic retinopathy: The role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 2012; 48:556-67. [DOI: 10.1016/j.nbd.2012.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 12/30/2022] Open
|
8
|
Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem 2012; 60:777-88. [PMID: 22736709 DOI: 10.1369/0022155412452737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During development of the nervous system, large numbers of neurons are overproduced and then eliminated by programmed cell death. Puma is a BH3-only protein that is reported to be involved in the initiation of developmental programmed cell death in rodent retinal neurons. The expression and cellular localization of Puma in retinal tissues during development are not, however, well known. Here the authors report the expression pattern of Puma during retinal development in the rat. During the period of programmed cell death in the retina, Puma was expressed in some members of each retinal neuron, including retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells, and photoreceptor cells. Although the developmental programmed cell death of cholinergic amacrine cells is known to be independent of Puma, this protein was expressed in almost all their dendrites and somata of cholinergic amacrine cells at postnatal age 2 to 3 weeks, and it continued to be detected in cholinergic dendrites in the inner plexiform layer for up to 8 weeks after birth. These results suggest that Puma has some significant roles in retinal neurons after eye opening, especially that of cholinergic amacrine cells, in addition to programmed cell death of retinal neurons before eye opening.
Collapse
Affiliation(s)
- Taketoshi Wakabayashi
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi, Japan.
| | | | | | | |
Collapse
|
9
|
Wakabayashi T, Mori T, Hirahara Y, Koike T, Kubota Y, Takamori Y, Yamada H. Nuclear lamins are differentially expressed in retinal neurons of the adult rat retina. Histochem Cell Biol 2011; 136:427-36. [PMID: 21842415 DOI: 10.1007/s00418-011-0853-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Lamins are type V intermediate filament proteins that support nuclear membranes. They are divided into A-type lamins, which include lamin A and C, and B-type lamins, which include lamin B1 and B2. In the rat brain, lamin A and C are expressed in relatively equal amounts, while the expressions of lamin B1 and B2 vary depending on the cell type. Lamins play important roles in normal morphogenesis and function. In the nervous system, their abnormal expression causes several neurodegenerative diseases such as peripheral neuropathy, leukodystrophy and lissencephaly. The retina belongs to the central nervous system (CNS) and has widely been used as a source of CNS neurons. We investigated the expression patterns of lamin subtypes in the adult rat retina by immunohistochemistry and found that the staining patterns differed when compared with the brain. All retinal neurons expressed lamin B1 and B2 in relatively equal amounts. In addition, horizontal cells and a subpopulation of retinal ganglion cells expressed lamin A and C, while photoreceptor cells expressed neither lamin A nor C, and all other retinal neurons expressed lamin C only. This differential expression pattern of lamins in retinal neurons suggests that they may be involved in cellular differentiation and expression of cell-specific genes in individual retinal neurons.
Collapse
Affiliation(s)
- Taketoshi Wakabayashi
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|