1
|
Development and evaluation of plumbagin loaded chitin hydrogel for the treatment of skin cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Neuroprotective and acetylcholinesterase inhibitory activity of plumbagin in ICV-LPS induced behavioral deficits in rats. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Funel N, Dini V, Janowska A, Loggini B, Minale M, Grieco F, Riccio S, Romanelli M. Triticum vulgare Extract Modulates Protein-Kinase B and Matrix Metalloproteinases 9 Protein Expression in BV-2 Cells: Bioactivity on Inflammatory Pathway Associated with Molecular Mechanism Wound Healing. Mediators Inflamm 2020; 2020:2851949. [PMID: 32189993 PMCID: PMC7063223 DOI: 10.1155/2020/2851949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/04/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitously expressed zinc-dependent enzymes with proteolitic activities. They are expressed in physiological situations and pathological conditions involving inflammatory processes including epithelial to mesenchymal transition (EMT), neuronal injury, and cancer. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in healing tissue processes. Looking at both inflammatory and neuronal damages, MMP9 is involved in both processes and their modulation seems to be regulated by two proteins: tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6). However other important genes are involved in molecular regulation of transcription factors, protein-kinase B (AKT), and p65. In addition, Triticum vulgare extract (TVE) modulated the biological markers associated with inflammatory processes, including p65 protein. While there are no evidence that TVE might be involved in the biological modulation of other inflammatory marker as AKT, we would like to assess whether TVE is able to (1) modulate phosphorylation of AKT (pAKT) as an early marker of inflammatory process in vitro and (2) affect MMP9 protein expression in an in vitro model. The BV-2 cells (microglial of mouse) have been used as an in vitro model to simulate both inflammatory and neuronal injury pathologies. Here, MMP9 seems to be involved in cellular migration through inflammatory marker activation. We simulate an inflammatory preclinical model treating BV-2 cells with lipopolysaccharide (LPS) to induce proinflammatory activation affecting pAKT and p65 proteins. TVE is revealed to restore the native expression of AKT and p65. Additionally, TVE extract modulates also the protein concentration of MMP9. Nevertheless, immunofluorescence confocal analyses revealed that both AKT and MMP9 are regulated together, synchronously. This work seems to demonstrate that two important genes can be used to monitor the beginning of an inflammatory process, AKT and MMP9, in which TVE seems able to modulate their expression of inflammation-associated molecules.
Collapse
Affiliation(s)
- Niccola Funel
- Department of Dermatology, University of Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Functional Group-Dependent Induction of Astrocytogenesis and Neurogenesis by Flavone Derivatives. Biomolecules 2019; 9:biom9120812. [PMID: 31810286 PMCID: PMC6995541 DOI: 10.3390/biom9120812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) differentiate into multiple cell types, including neurons, astrocytes, and oligodendrocytes, and provide an excellent platform to screen drugs against neurodegenerative diseases. Flavonoids exert a wide range of biological functions on several cell types and affect the fate of NSCs. In the present study, we investigated whether the structure-activity relationships of flavone derivatives influence NSC differentiation. As previously reported, we observed that PD98059 (2′-amino-3′-methoxy-flavone), compound 2 (3′-methoxy-flavone) induced astrocytogenesis. In the present study, we showed that compound 3 (2′-hydroxy-3′-methoxy-flavone), containing a 3′-methoxy group, and a non-bulky group at C2′ and C4′, induced astrocytogenesis through JAK-STAT3 signaling pathway. However, compound 1 and 7–12 without the methoxy group did not show such effects. Interestingly, the compounds 4 (2′,3′-dimethoxyflavone), 5 (2′-N-phenylacetamido-3′-methoxy-flavone), and 6 (3′,4′-dimethoxyflavone) containing 3′-methoxy could not promote astrocytic differentiation, suggesting that both the methoxy groups at C3′ and non-bulky group at C2′ and C4′ are required for the induction of astrocytogenesis. Notably, compound 6 promoted neuronal differentiation, whereas its 4′-demethoxylated analog, compound 2, repressed neurogenesis, suggesting an essential role of the methoxy group at C4′ in neurogenesis. These findings revealed that subtle structural changes of flavone derivatives have pronounced effects on NSC differentiation and can guide to design and develop novel flavone chemicals targeting NSCs fate regulation.
Collapse
|
5
|
Lee HR, Lee J, Kim HJ. Differential effects of MEK inhibitors on rat neural stem cell differentiation: Repressive roles of MEK2 in neurogenesis and induction of astrocytogenesis by PD98059. Pharmacol Res 2019; 149:104466. [PMID: 31562895 DOI: 10.1016/j.phrs.2019.104466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
Abstract
Neural stem cells (NSCs) proliferate and differentiate into neurons and glia depending on the culture environment. However, the underlying mechanisms determining the fate of NSCs are not fully understood. Growth factors facilitate NSC proliferation through mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and MAPK activation, and NSCs differentiate into neurons, astrocytes, or oligodendrocytes when mitogens are withdrawn from the culture media. Here, we aimed to identify the effects and roles of MEK signaling on the determination of NSC fate. MEK inhibitors, U0126, SL327, and PD98059, had differential effects on NSC differentiation. U0126 and SL327, which are known to inhibit MEK1 and MEK2, induced neuronal differentiation, whereas PD98059, which is reported to preferentially inhibit MEK1 at higher concentrations, increased astrocytogenesis. Knockdown of MEK2 using small interfering RNA increased neurogenesis and over-expression of wild type (WT) MEK2 inhibited neurogenesis, suggesting a repressive role of MEK2 in neuronal differentiation. The chemical structure of PD98059 appears to be important for induction of astrocytogenesis because not only PD98059 (2'-amino-3'-methoxyflavone) but also its chemical structural mimetic, 3'-methoxyflavone, enhanced astrocytogenesis. Therefore, in our study, we suggest that MEK inhibitors have distinct functions in determining NSC fate. Inhibition of MEK2 is important for induction of neurogenesis in NSCs. U0126 and SL327 increase neurogenesis through MEK2 inhibition, whereas PD98059 induced astrocytogenesis in NSCs, which is mediated by the chemical structure, particularly the 3'-methoxy group rather than its renowned MEK1 inhibition.
Collapse
Affiliation(s)
- Ha-Rim Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 2018; 101:379-390. [DOI: 10.1016/j.biopha.2018.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
|
7
|
Yuan JH, Pan F, Chen J, Chen CE, Xie DP, Jiang XZ, Guo SJ, Zhou J. Neuroprotection by plumbagin involves BDNF-TrkB-PI3K/Akt and ERK1/2/JNK pathways in isoflurane-induced neonatal rats. ACTA ACUST UNITED AC 2017; 69:896-906. [PMID: 28464236 DOI: 10.1111/jphp.12681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study was designed to assess the effects of plumbagin on isoflurane-induced neurotoxicity. METHODS Neonatal Sprague Dawley rat pups were treated with plumbagin (50, 100 or 150 mg/kg body weight, orally) from postnatal day 2. The pups on postnatal day 7 were subjected to isoflurane (0.75%) exposure for 6 h. Neuronal apoptosis in the hippocampal tissues was detected by TUNEL assay and FluroJade B staining following isoflurane exposure. Protein expressions were analysed by immunoblotting. RT-PCR was performed to assess mRNA levels of brain-derived neurotrophic factor (BDNF) and TrkB. KEY FINDINGS We observed reduced apoptosis in hippocampal CA1, CA3 and dentate gyrus regions along with severely reduced pro-apoptotic factors (Bad, Bax and cleaved caspase-3) expression and raised levels of Bcl-2, Bcl-xL, survivin, xIAP and cIAPs (cell survival proteins) in plumbagin supplemented rats. Decrease in the levels of JNK, phospho-JNK, c-Jun and phospho-c-Jun with enhanced ERK1/2 levels was observed on plumbagin pretreatment. Down-regulated PI3K/Akt signalling following isoflurane was activated by plumbagin as evidenced by raised PI3K/Akt pathway proteins - mTORc1, Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, PTEN and NF-κBp65 in the hippocampal tissues as detected by Western blotting. The mRNA levels were enhanced on plumbagin supplementation. CONCLUSIONS Plumbagin exerted its neuroprotective effects by effectively suppressing isoflurane-induced neuronal apoptosis via regulating BDNF-TrkB-PI3/Akt and ERK/JNK signalling.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Feng Pan
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Jie Chen
- Taizhou University Medical School, Taizhou, Zhejiang, China
| | - Cai-Er Chen
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Deng-Pan Xie
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Xing-Zhu Jiang
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Su-Juan Guo
- Department of Neonatology, Wenling Maternal and Child Health Hospital, Wenling, Zhejiang, China
| | - Jun Zhou
- Taizhou University Medical School, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
Chen XJ, Zhang JG, Wu L. Plumbagin inhibits neuronal apoptosis, intimal hyperplasia and also suppresses TNF-α/NF-κB pathway induced inflammation and matrix metalloproteinase-2/9 expression in rat cerebral ischemia. Saudi J Biol Sci 2017; 25:1033-1039. [PMID: 30174499 PMCID: PMC6116857 DOI: 10.1016/j.sjbs.2017.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemic damage and infarction are well documented in stroke, which is presenting a foremost health concern globally with very high mortality and morbidity rates. Mechanisms that are associated with excitotoxicity, inflammation and oxidative stress are found to be critically involved in ischemic damage. Adverse effects of current therapies are imposing the need in development of neuroprotective agents that are very effective. To explore this we experimentally induced ischemic brain injury and investigated the effects of plumbagin. Induction of cerebral infarction and ischemia-reperfusion (I/R) was done by middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. Plumbagin (50, 100 or 200 mg/kg b.wt) was intragastrically administered for 9 days before ischemia induction and an hour prior on the day of ischemic insult. Plumbagin treatment attenuated pulmonary edema, neuronal apoptosis and reduced cerebral infarct volume. Cleaved caspase-3 and apoptotic cascade protein expressions were regulated. Overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and nitric oxide (NO) following I/R were reduced. Prior plumbagin administration had down-regulated NF-κB signalling and MMP-2 and MMP-9 expression. Overall, the results reveal the potent neuroprotective efficacy of plumbagin against I/R-induced brain injury via effectively modulating apoptotic pathways, MMPs and neuro-inflammatory cascades.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Jian-Guo Zhang
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Lan Wu
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong, China
| |
Collapse
|
9
|
Hwang GH, Ryu JM, Jeon YJ, Choi J, Han HJ, Lee YM, Lee S, Bae JS, Jung JW, Chang W, Kim LK, Jee JG, Lee MY. The role of thioredoxin reductase and glutathione reductase in plumbagin-induced, reactive oxygen species-mediated apoptosis in cancer cell lines. Eur J Pharmacol 2015; 765:384-93. [PMID: 26341012 DOI: 10.1016/j.ejphar.2015.08.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/24/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
Plumbagin is a secondary metabolite that was first identified in the Plumbago genus of plants. It is a naphthoquinone compound with anti-atherosclerosis, anticancer, anti-inflammatory, antimicrobial, contraceptive, cardiotonic, immunosuppressive, and neuroprotective activities. However, the mechanisms of plumbagin's activities are largely unknown. In this study, we examined the effect of plumbagin on HepG2 hepatocellular carcinoma cells as well as LLC lung cancer cells, SiHa cervical carcinoma cells. Plumbagin significantly decreased HepG2 cell viability in a dose-dependent manner. Additionally, treatment with plumbagin significantly increased the Bax/Bcl-2 ratio and caspase-3/7 activity. Using the similarity ensemble approach (SEA)-a state-of-the-art cheminformatic technique-we identified two previously unknown cellular targets of plumbagin: thioredoxin reductase (TrxR) and glutathione reductase (GR). This was then confirmed using protein- and cell-based assays. We found that plumbagin was directly reduced by TrxR, and that this reduction was inhibited by the TrxR inhibitor, sodium aurothiomalate (ATM). Plumbagin also decreased the activity of GR. Plumbagin, and the GR inhibitor sodium arsenite all increased intracellular reactive oxygen species (ROS) levels and this increase was significantly attenuated by pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) in HepG2 cells. Plumbagin increased TrxR-1 and heme oxygenase (HO)-1 expression and pretreatment with NAC significantly attenuated the plumbagin-induced increase of TrxR-1 and HO-1 expression in HepG2 cells, LLC cells and SiHa cells. Pretreatment with NAC significantly prevented the plumbagin-induced decrease in cell viability in these cell types. In conclusion, plumbagin exerted its anticancer effect by directly interacting with TrxR and GR, and thus increasing intracellular ROS levels.
Collapse
Affiliation(s)
- Geun Hye Hwang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yu Jin Jeon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Joonhyeok Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Wha Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jun-Goo Jee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Ying J, Tsujii M, Kondo J, Hayashi Y, Kato M, Akasaka T, Inoue T, Shiraishi E, Inoue T, Hiyama S, Tsujii Y, Maekawa A, Kawai S, Fujinaga T, Araki M, Shinzaki S, Watabe K, Nishida T, Iijima H, Takehara T. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. Int J Oncol 2015; 46:1551-1559. [PMID: 25625841 DOI: 10.3892/ijo.2015.2851] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3 inhibition may be superior to STAT3 inhibition for CSC-targeting therapies concomitant with anticancer drugs.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Cell Culture Techniques
- Cell Line, Tumor
- Cell Proliferation
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Drug Resistance, Neoplasm/drug effects
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukin-6/pharmacology
- Kruppel-Like Factor 4
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptor, Notch3
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/genetics
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jin Ying
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jumpei Kondo
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Motohiko Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomofumi Akasaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuta Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Eri Shiraishi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tahahiro Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akira Maekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shoichiro Kawai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuji Fujinaga
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maekawa Araki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Watabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tsutomu Nishida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Jali BR, Kuang Y, Neamati N, Baruah JB. Selective binding of naphthoquinone derivatives to serum albumin proteins and their effects on cytotoxicity. Chem Biol Interact 2014; 214:10-7. [DOI: 10.1016/j.cbi.2014.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/10/2013] [Accepted: 01/23/2014] [Indexed: 01/05/2023]
|
12
|
Cui W, Tavri S, Benchimol MJ, Itani M, Olson ES, Zhang H, Decyk M, Ramirez RG, Barback CV, Kono Y, Mattrey RF. Neural progenitor cells labeling with microbubble contrast agent for ultrasound imaging in vivo. Biomaterials 2013; 34:4926-35. [PMID: 23578557 DOI: 10.1016/j.biomaterials.2013.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
Tracking neuroprogenitor cells (NPCs) that are used to target tumors, infarction or inflammation, is paramount for cell-based therapy. We employed ultrasound imaging that can detect a single microbubble because it can distinguish its unique signal from those of surrounding tissues. NPCs efficiently internalized positively charged microbubbles allowing a clinical ultrasound system to detect a single cell at 7 MHz. When injected intravenously, labeled NPCs traversed the lungs to be imaged in the left ventricle and the liver where they accumulated. Internalized microbubbles were not only less sensitive to destruction by ultrasound, but remained visible in vivo for days as compared to minutes when given free. The extended longevity provides ample time to allow cells to reach their intended target. We were also able to transfect NPCs in vitro when microbubbles were preloaded with GFP plasmid only when cells were insonated. Transfection efficiency and cell viability were both greater than 90%.
Collapse
Affiliation(s)
- Wenjin Cui
- Department of Radiology, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sinha S, Pal K, Elkhanany A, Dutta S, Cao Y, Mondal G, Iyer S, Somasundaram V, Couch FJ, Shridhar V, Bhattacharya R, Mukhopadhyay D, Srinivas P. Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer 2013; 132:1201-12. [PMID: 22806981 PMCID: PMC3496826 DOI: 10.1002/ijc.27724] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/25/2012] [Indexed: 11/11/2022]
Abstract
Angiogenesis is a hallmark of tumor development and metastatic progression, and anti-angiogenic drugs targeting the VEGF pathway have shown to decrease the disease progression in cancer patients. In this study, we have analyzed the anti-proliferative and anti-angiogenic property of plumbagin in cisplatin sensitive, BRCA2 deficient, PEO-1 and cisplatin resistant, BRCA2 proficient PEO-4 ovarian cancer cells. Both PEO-1 and PEO-4 ovarian cancer cells are sensitive to plumbagin irrespective of BRCA2 status in both normoxia and hypoxia. Importantly, plumbagin treatment effectively inhibits VEGF-A and Glut-1 in PEO-1 and PEO-4 ovarian cancer cells. We have also analyzed the p53 mutant, cisplatin resistant, and BRCA2 proficient OVCAR-5 cells. Plumbagin challenge also restricts the VEGF induced pro-angiogenic signaling in HUVECs and subsequently endothelial cell proliferation. In addition, we observe a significant effect on tumor regression among OVCAR-5 tumor-bearing mice treated with plumbagin, which is associated with significant inhibition of Ki67 and vWF expressions. Plumbagin also significantly reduces CD31 expression in an ear angiogenesis assay. Collectively, our studies indicate that plumbagin, as an anti-cancer agent disrupts growth of ovarian cancer cells through the inhibition of proliferation as well as angiogenesis.
Collapse
Affiliation(s)
- Sutapa Sinha
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | | | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Gourish Mondal
- Department of Laboratory medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Seethalakshmi Iyer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Veena Somasundaram
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| | - Fergus J. Couch
- Department of Laboratory medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Viji Shridhar
- Department of Laboratory medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
| | - Priya Srinivas
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN-55905
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
14
|
Synthetic condensed 1,4-naphthoquinone derivative shifts neural stem cell differentiation by regulating redox state. Mol Neurobiol 2012; 47:313-24. [PMID: 23054678 DOI: 10.1007/s12035-012-8353-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Abstract
Naphthoquinones are bioactive compounds widespread in nature that impact on several cellular pathways, including cell proliferation and survival, by acting as prooxidants and electrophiles. We have previously described the role of the synthetic isoxazole condensed 1,4-naphthoquinone derivative 1a in preventing apoptosis induced by distinct stimuli in several cell models. In addition, apoptosis regulators and executioners may control neural stem cell (NSC) fate, without involving cell death per se. Here, we hypothesize that 1a might also play a role in NSC fate decision. We found that exposure to 1a shifts NSC differentiation potential from neurogenic to gliogenic lineage and involves the generation of reactive oxygen species, without increasing cell death. Modulation of caspases and calpains, using cysteine protease inhibitors, failed to mimic 1a effects. In addition, incubation with the naphthoquinone derivative resulted in upregulation and nuclear translocation of antioxidant responsive proteins, Nrf2 and Sirt1, which in turn may mediate 1a-directed shift in NSC differentiation. In fact, antioxidants halted the shift in NSC differentiation potential from neurogenic to gliogenic lineage, while strongly reducing reactive oxygen species generation and Nrf2 and Sirt1 nuclear translocation in NSC exposed to 1a. Collectively, these data support a new role for a specific naphthoquinone derivative in NSC fate decision and underline the importance of redox environment control.
Collapse
|
15
|
Lai L, Liu J, Zhai D, Lin Q, He L, Dong Y, Zhang J, Lu B, Chen Y, Yi Z, Liu M. Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2. Br J Pharmacol 2012; 165:1084-96. [PMID: 21658027 DOI: 10.1111/j.1476-5381.2011.01532.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiogenesis-based therapy is an effective anti-tumour strategy and previous reports have shown some beneficial effects of a naturally occurring bioactive compound plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone). Here, we sought to determine the biological effects of plumbagin on signalling mechanisms during tumour angiogenesis. EXPERIMENTAL APPROACH The effects of plumbagin were evaluated in various in vitro assays which utilised human umbilical vein endothelial cells (HUVEC) proliferation, migration and tube formation. Plumbagin was also evaluated in vivo using chicken embryo chorioallantoic membrane (CAM) and mouse corneal micropocket models., Human colon carcinoma and prostate cancer xenograft mouse models were used to evaluate the effects of plumbagin on angiogenesis. Immunofluorescence, GST pull-down and Western blotting were employed to explore the underlying mechanisms of VEGF receptor (VEGFR)2-mediated Ras signalling pathways. KEY RESULTS Plumbagin not only inhibited endothelial cell proliferation, migration and tube formation but also suppressed chicken chorioallantoic membrane neovascularzation and VEGF-induced mouse corneal angiogenesis. Moreover, plumbagin suppressed tumour angiogenesis and tumour growth in human colon carcinoma and prostate cancer xenograft mouse models. At a molecular level, plumbagin blocked the Ras/Rac/cofilin and Ras/MEK signalling pathways mediated by VEGFR2 in HUVECs. CONCLUSIONS AND IMPLICATIONS Plumbagin inhibited tumour angiogenesis and tumour growth by interference with the VEGFR2-mediated Ras signalling pathway in endothelial cells. Our findings demonstrate a molecular basis for the effects of plumbagin and suggest that this compound might have therapeutic ant-tumour effects.
Collapse
Affiliation(s)
- Li Lai
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Astrocytes are possibly the most numerous cells of the vertebrate central nervous system, yet a detailed characterization of their functions is still missing. One potential reason for the obscurity of astrocytic function is that they represent a diverse population of cells that all share some critical characteristics. In the CNS, astrocytes have been proposed to perform many functions. For example, they are supportive cells that provide guidance to newly formed migrating neurons and axons. They regulate the functions of endothelial cells at the blood brain barrier, provide nutrients, and maintain homeostasis including ionic balance within the CNS. More recently, dissecting the central role of astrocytes in mediating injury responses in the CNS, particularly the spinal cord, has become an area of considerable importance. The ability to culture-enriched populations of astrocytes has facilitated a detailed dissection of their potential roles in the developing and adult, normal, and injured brain and spinal cord. Most importantly, in vitro models have defined molecular signals that may mediate or regulate astrocyte functions and the capacity to modulate these signals may provide new opportunities for therapeutic intervention after spinal cord injury and other neural insults.
Collapse
Affiliation(s)
- Amber E Kerstetter
- Department of Neurosurgery, Center for Translational Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
17
|
Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 2011; 52:221-47. [PMID: 21942631 DOI: 10.1146/annurev-pharmtox-010611-134517] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones are a group of highly reactive organic chemical species that interact with biological systems to promote inflammatory, anti-inflammatory, and anticancer actions and to induce toxicities. This review describes the chemistry, biochemistry, and cellular effects of 1,2- and 1,4-naphthoquinones and their derivatives. The naphthoquinones are of particular interest because of their prevalence as natural products and as environmental chemicals, present in the atmosphere as products of fuel and tobacco combustion. 1,2- and 1,4-naphthoquinones are also toxic metabolites of naphthalene, the major polynuclear aromatic hydrocarbon present in ambient air. Quinones exert their actions through two reactions: as prooxidants, reducing oxygen to reactive oxygen species; and as electrophiles, forming covalent bonds with tissue nucleophiles. The targets for these reactions include regulatory proteins such as protein tyrosine phosphatases; Kelch-like ECH-associated protein 1, the regulatory protein for NF-E2-related factor 2; and the glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase. Through their actions on regulatory proteins, quinones affect various cell signaling pathways that promote and protect against inflammatory responses and cell damage. These actions vary with the specific quinone and its concentration. Effects of exposure to naphthoquinones as environmental chemicals can vary with the physical state, i.e., whether the quinone is particle bound or is in the vapor state. The exacerbation of pulmonary diseases by air pollutants can, in part, be attributed to quinone action.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
18
|
Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int J Cell Biol 2010; 2010:632739. [PMID: 20976254 PMCID: PMC2952894 DOI: 10.1155/2010/632739] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/13/2010] [Indexed: 12/24/2022] Open
Abstract
Healthy lifestyles and environment produce a good state of health. A number of scientific studies support the notion that external stimuli regulate an individual's epigenomic profile. Epigenetic changes play a key role in defining gene expression patterns under both normal and pathological conditions. As a major posttranslational modification, lysine (K) acetylation has received much attention, owing largely to its significant effects on chromatin dynamics and other cellular processes across species. Lysine acetyltransferases and deacetylases, two opposing families of enzymes governing K-acetylation, have been intimately linked to cancer and other diseases. These enzymes have been pursued by vigorous efforts for therapeutic development in the past 15 years or so. Interestingly, certain dietary components have been found to modulate acetylation levels in vivo. Here we review dietary, metabolic, and environmental modulators of the K-acetylation machinery and discuss how they may be of potential value in the context of disease prevention.
Collapse
|