1
|
Lawther K, Santos FG, Oyama LB, Huws SA. - Invited Review - Chemical signalling within the rumen microbiome. Anim Biosci 2024; 37:337-345. [PMID: 38186253 PMCID: PMC10838665 DOI: 10.5713/ab.23.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.
Collapse
Affiliation(s)
- Katie Lawther
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Fernanda Godoy Santos
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Linda B Oyama
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Sharon A Huws
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| |
Collapse
|
2
|
An H, Razzaq A, Nawaz A, Noman SM, Khan SAR. Nexus between green logistic operations and triple bottom line: evidence from infrastructure-led Chinese outward foreign direct investment in Belt and Road host countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51022-51045. [PMID: 33977429 DOI: 10.1007/s11356-021-12470-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023]
Abstract
The Belt and Road initiative (BRI) mainly relies on the traditional and underdeveloped logistical trade routes including the terrestrial and oceanic Silk Road. The poor logistic infrastructure across the BRI region not only restricts trade potential and economic progress but also creates several social and environmental challenges. Therefore, this study investigates the relationship between green logistic operations, economic, environmental, and social indicators of countries along with the BRI. This study provides three key findings using feasible generalized least squares (FGLS) and system generalized method of moments (Sys-GMM) estimation techniques. First, Chinese outward foreign direct investment significantly improves the quality and quantity of green logistic operations in terms of transport infrastructure, customs services, cost, time, tracking, and reliability of international shipments. Second, a higher quality of transport-related infrastructure, customs clearance efficiency, and competency of logistics services significantly mitigate the level of carbon emissions due to the energy conservation in the supply chain process. Moreover, the application of renewable energy resources significantly improves the quality of logistics operations. These results indicate that higher quality of green logistic operations provides efficient infrastructure and greater information sharing among supply chain partners that increase trade volume, growth opportunities, and environmental sustainability. Third, a higher institutional quality helps to mitigate social concerns through improvement in the efficiency of logistic operations. Although BRI regional estimates show significant variations, the overall results imply that BRI participating countries should integrate with ongoing investment projects to promote the quality and quantity of green logistic infrastructure and ensuring environmental stewardship.
Collapse
Affiliation(s)
- Hui An
- School of Management and Economics, Dalian University of Technology, Dalian, People's Republic of China
| | - Asif Razzaq
- School of Management and Economics, Dalian University of Technology, Dalian, People's Republic of China.
| | - Ahsan Nawaz
- Institute of Construction Project Management, College of Civil Engineering & Architecture, Zhejiang University, Hangzhou, 320058, China
| | - Sohail M Noman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Information Sciences and Technology, Yanshan University, Qinhuangdao, Hebei, China
| | - Syed Abdul Rehman Khan
- School of Economics and Management, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Holwerda EK, Thorne PG, Olson DG, Amador-Noguez D, Engle NL, Tschaplinski TJ, van Dijken JP, Lynd LR. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:155. [PMID: 25379055 PMCID: PMC4207885 DOI: 10.1186/s13068-014-0155-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/03/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. RESULTS Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. CONCLUSIONS C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.
Collapse
Affiliation(s)
- Evert K Holwerda
- />Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | | | - Daniel G Olson
- />Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
| | - Daniel Amador-Noguez
- />Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Nancy L Engle
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Timothy J Tschaplinski
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Johannes P van Dijken
- />Emeritus Industrial Biotechnology of Delft University of Technology, Delft, BC 2628 The Netherlands
| | - Lee R Lynd
- />Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- />BioEnergy Science Center, Oak Ridge, TN 37830 USA
- />Mascoma Corporation, Lebanon, NH 03766 USA
| |
Collapse
|
4
|
Abstract
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h(-1)) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.
Collapse
|
5
|
Implementation of a biotechnological process for vat dyeing with woad. ACTA ACUST UNITED AC 2012; 39:1309-19. [DOI: 10.1007/s10295-012-1139-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/18/2012] [Indexed: 11/26/2022]
Abstract
Abstract
The traditional process for vat dyeing with woad (Isatis tinctoria L.) basically relies on microbial reduction of indigo to its soluble form, leucoindigo, through a complex fermentative process. In the 19th century, cultivation of woad went into decline and use of synthetic indigo dye and chemical reduction agents was established, with a consequent negative impact on the environment due to the release of polluting wastewaters by the synthetic dyeing industry. Recently, the ever-growing demand for environmentally friendly dyeing technologies has led to renewed interest in ecological textile traditions. In this context, this study aims at developing an environmentally friendly biotechnological process for vat dyeing with woad to replace use of polluting chemical reduction agents. Two simple broth media, containing yeast extract or corn steep liquor (CSL), were comparatively evaluated for their capacity to sustain the growth and reducing activity of the strain Clostridium isatidis DSM 15098T. Subsequently, the dyeing capacity of the CSL medium added with 140 g L−1 of woad powder, providing 2.4 g L−1 of indigo dye, was evaluated after fermentation in laboratory bioreactors under anaerobic or microaerophilic conditions. In all fermentations, a sufficiently negative oxidation/reduction potential for reduction of indigo was reached as early as 24 h and maintained up to the end of the monitoring period. However, clearly faster indigo dye reduction was seen in the broth cultures fermented under strict anaerobiosis, thus suggesting the suitability of the N2 flushing strategy for enhancement of bacterial-driven indigo reduction.
Collapse
|
6
|
Lukás F, Gorenc G, Kopecný J. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol (Praha) 2008; 53:221-4. [PMID: 18661296 DOI: 10.1007/s12223-008-0030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 12/21/2022]
Abstract
The Vibrio harveyi strain BB170-autoinducer bioassay was used to detect possible quorum sensing autoinducer-2 molecule (AI-2) in culture fluids of commensal intestinal bacteria. Culture fluids of Bacteroides vulgatus, Clostridium proteoclasticum, Escherichia coli, Eubacterium rectale, Lachnospira multipara, Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus and Ruminococcus flavefaciens contained AI-2-like molecules. The PCR bands from some of the tested strains could be also amplified using primers designed for the luxS gene. These findings suggest that AI-2 is present in the gastrointestinal tract; however, it has not yet been proved whether it is used for bacterial cell-to-cell communication.
Collapse
Affiliation(s)
- F Lukás
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Science of the Czech Republic, 142 20 Prague, Czechia.
| | | | | |
Collapse
|
7
|
Ammor MS, Michaelidis C, Nychas GJE. Insights into the role of quorum sensing in food spoilage. J Food Prot 2008; 71:1510-25. [PMID: 18680957 DOI: 10.4315/0362-028x-71.7.1510] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Food spoilage is a consequence of the degrading enzymatic activity of some food-associated bacteria. Several proteolytic, lipolytic, chitinolytic, and pectinolytic activities associated with the deterioration of goods are regulated by quorum sensing, suggesting a potential role of such cell-to-cell communication in food spoilage. Here we review quorum sensing signaling molecules and methods of their detection and quantification, and we provide insights into the role of quorum sensing in food spoilage and address potential quorum sensing inhibitors that might be used as biopreservatives.
Collapse
Affiliation(s)
- Mohammed Salim Ammor
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science & Technology, Agricultural University of Athens, 75 lera Odos, 11855 Athens, Greece.
| | | | | |
Collapse
|