1
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
2
|
Kim J, Kim J, Kim Y, Oh S, Song M, Choe JH, Whang KY, Kim KH, Oh S. Influences of quorum-quenching probiotic bacteria on the gut microbial community and immune function in weaning pigs. Anim Sci J 2017; 89:412-422. [PMID: 29154473 DOI: 10.1111/asj.12954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022]
Abstract
The aim of this study is to investigate the dynamic gut microbial diversity in weaning swine after administering feed supplemented with probiotic bacteria that specifically inhibit the activity of quorum molecules. Initially, the universal quorum molecule autoinducer-2 (AI-2) bioassay results indicated that AI-2 activity was profoundly inhibited in enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the presence of Lactobacillus acidophilus strain 30SC cell extract, although the growth of EHEC was not affected. Based on plate counting results, bacterial community analysis revealed a specific reduction in coliforms compared to the control, whereas the population of lactobacilli increased in weaning swine in in vivo trials. Supplementation with L. acidophilus strain 30SC did not affect the counts of other communities, such as total aerobes and yeast/mold. In addition, PCR-denaturing gradient gel electrophoresis analysis showed a significant difference in the 16S rRNA gene products after administering L. acidophilus strain 30SC. Selected bands were sequenced, and most of them were identified as uncultured bacterium clones or a Lactobacillus- and Bifidobacterium-specific community. Therefore, our results indicate that quorum-quenching probiotic bacteria can significantly modulate the gut microbiota of swine and these beneficial effects can contribute to the improvement of performance and health in the gastrointestinal tract of weaning pigs.
Collapse
Affiliation(s)
- Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, Korea
| | - Jaepil Kim
- Division of Animal Science, Chonnam National University, Gwangju, Korea
| | - Younghoon Kim
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jee Hwan Choe
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | | | - Kwang Hyun Kim
- Division of Animal Science, Chonnam National University, Gwangju, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju, Korea
| |
Collapse
|
3
|
Mohsin M, Guenther S, Schierack P, Tedin K, Wieler LH. Probiotic Escherichia coli Nissle 1917 reduces growth, Shiga toxin expression, release and thus cytotoxicity of enterohemorrhagic Escherichia coli. Int J Med Microbiol 2014; 305:20-6. [PMID: 25465158 DOI: 10.1016/j.ijmm.2014.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/24/2014] [Accepted: 10/18/2014] [Indexed: 01/03/2023] Open
Abstract
Due to increased release or production of Shiga toxin by Enterohemorrhagic Escherichia coli (EHEC) after exposure to antimicrobial agents, the role of antimicrobial agents in EHEC mediated infections remains controversial. Probiotics are therefore rapidly gaining interest as an alternate therapeutic option. The well-known probiotic strain Escherichia coli Nissle 1917 (EcN) was tested in vitro to determine its probiotic effects on growth, Shiga toxin (Stx) gene expression, Stx amount and associated cytotoxicity on the most important EHEC strains of serotype O104:H4 and O157:H7. Following co-culture of EcN:EHEC in broth for 4 and 24 h, the probiotic effects on EHEC growth, toxin gene expression, Stx amount and cytotoxicity were determined using quantitative real time-PCR, Stx-ELISA and Vero cytotoxicity assays. Probiotic EcN strongly reduced EHEC numbers (cfu) of O104:H4 up to (68%) and O157:H7 to (72.2%) (p<0.05) in LB broth medium whereas the non-probiotic E. coli strain MG1655 had no effect on EHEC growth. The level of stx expression was significantly down-regulated, particularly for the stx2a gene. The stx down-regulation in EcN co-culture was not due to reduced numbers of EHEC. A significant inhibition in Stx amounts and cytotoxicity were also observed in sterile supernatants of EcN:EHEC co-cultures. These findings indicate that probiotic EcN displays strong inhibitory effects on growth, Shiga toxin gene expression, amount and cytotoxicity of EHEC strains. Thus, EcN may be considered as a putative therapeutic candidate, in particular against EHEC O104:H4 and O157:H7.
Collapse
Affiliation(s)
- Mashkoor Mohsin
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany; Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sebastian Guenther
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Peter Schierack
- Faculty of Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lothar H Wieler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1037-42. [PMID: 24837471 DOI: 10.1016/j.phymed.2014.04.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/13/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
E. coli O157:H7 is the most common cause of hemorrhagic colitis, and no effective therapy exists for E. coli O157:H7 infection. Biofilm formation is closely related to E. coli O157:H7 infection and constitutes a mechanism of antimicrobial resistance. Hence, the antibiofilm or antivirulence approach provides an alternative to antibiotic strategies. Coumarin and its derivatives have a broad range of biological effects, and in this study, the antibiofilm activities of nine coumarins were investigated against E. coli O157:H7. Coumarin or umbelliferone at 50μg/ml was found to inhibit biofilm E. coli O157:H7 formation by more than 80% without affecting bacterial growth. Transcriptional analysis showed that coumarins repressed curli genes and motility genes in E. coli O157:H7, and these findings were in-line with observed reductions in fimbriae production, swarming motility, and biofilm formation. In addition, esculetin repressed Shiga-like toxin gene stx2 in E. coli O157:H7 and attenuated its virulence in vivo in the nematode Caenorhabditis elegans. These findings show that coumarins have potential use in antivirulence strategies against persistent E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Hyun Seob Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon, 305-606, Republic of Korea
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
5
|
Bekele TL, Keith P, Adelina R, Vyvyan S, Victoria D. Oral <i>Lactobacillus plantarum</i> NCIMB 8825 Inhibits Adhesion, Invasion and Metabolism of <i>Neisseria meningitidis</i> Serogroup B and Affords Anti-Inflammatory and Cytotoxic Protection to Nasopharyngeal Epithelial Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.42013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Pellarín MG, Albrecht C, Rojas MJ, Aguilar JJ, Konigheim BS, Paraje MG, Albesa I, Eraso AJ. Inhibition of cytotoxicity of Shiga toxin of Escherichia coli O157:H7 on vero cells by Prosopis alba Griseb (Fabaceae) and Ziziphus mistol Griseb (Rhamnaceae) extracts. J Food Prot 2013; 76:1733-9. [PMID: 24112573 DOI: 10.4315/0362-028x.jfp-13-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The capacity of Prosopis alba Griseb. and Ziziphus mistol Griseb. fruit extracts to inhibit the toxic action of Shiga toxin (Stx) was investigated. Purification of Stx from Escherichia coli O157:H7 was performed by saline precipitation and affinity chromatography using a column with globotriaosylceramide, while the fruits were subjected to ethanolic or aqueous extractions. The protective action of both fruits was determined by pre-, co-, and postincubation of one 50% cytotoxic dose per ml of Stx with different concentrations of ethanolic and aqueous extracts in confluent monolayers of Vero cells for 72 h at 37°C (5% CO2). The inhibition of the cytotoxic effect of Stx by fruit extracts was determined by the neutral red vital staining technique. The extraction of the polyphenols and flavonoids was effective, and more polyphenols per milligram of dissolved solids were obtained from P. alba than from Z. mistol. However, there were more flavonoids in Z. mistol than in P. alba. Components of both fruits increased the viability of cells treated with Stx when the extracts were preincubated with Stx for 1 h before being applied to the cell cultures, with the ethanolic extract of P. alba showing 95% cell viability at a concentration of 2.45 mg/ml. The extracts were less effective in protecting cells when Stx, extracts, and cells were coincubated together without a previous incubation of Stx; only the concentrations of 19.46 mg/ml for the P. alba aqueous extract and 3.75 mg/ml for the Z. mistol ethanolic extract resulted in the inhibition of cytotoxicity, with 52 and 56% cell viability occurring, respectively. Investigation into this difference in the protection of cells indicated that the protein molecule of Stx suffered degradation to advanced oxidative protein products during preincubation with extracts, principally with P. alba, which exhibited a greater amount of nonflavonoid polyphenols than Z. mistol. The prooxidant action on Stx favored the cells and enhanced the protective action of both fruits.
Collapse
Affiliation(s)
- M G Pellarín
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros s/n, Ciudad Universitaria, Córdoba, Argentina;,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from Escherichia coli O157:H7. J DAIRY RES 2012. [PMID: 23186804 DOI: 10.1017/s0022029912000659] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.
Collapse
|
8
|
Complete genome sequencing of Lactobacillus acidophilus 30SC, isolated from swine intestine. J Bacteriol 2011; 193:2882-3. [PMID: 21478365 DOI: 10.1128/jb.00343-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lactobacillus acidophilus 30SC has been isolated from swine intestines and considered a probiotic strain for dairy products because of its ability to assimilate cholesterol and produce bacteriocins. Here, we report the complete genome sequence of Lactobacillus acidophilus 30SC (2,078,001 bp) exhibiting strong acid resistance and enhanced bile tolerance.
Collapse
|
9
|
Tahamtan Y, Kargar M, Namdar N, Rahimian A, Hayati M, Namavari M. Probiotic inhibits the cytopathic effect induced by Escherichia coli O157:H7 in Vero cell line model. Lett Appl Microbiol 2011; 52:527-31. [DOI: 10.1111/j.1472-765x.2011.03037.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Sharma S, Singh RL, Kakkar P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol 2010; 49:770-9. [PMID: 21130831 DOI: 10.1016/j.fct.2010.11.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/20/2010] [Accepted: 11/29/2010] [Indexed: 02/07/2023]
Abstract
Oxidative stress is an important factor in drug induced hepatotoxicity and antioxidants from natural sources have potential to ameliorate it. The present study was aimed to investigate cyto-protective potential of probiotic Enterococcus lactis IITRHR1 (El(SN)) and Lactobacillus acidophilus MTCC447 (La(SN)) lysate against acetaminophen (APAP) induced hepatotoxicity. Cultured rat hepatocytes pretreated with El(SN)/La(SN) showed higher cell viability under APAP stress. Pre-treatment with El(SN,) restored glutathione level and reduced ROS generation significantly which are major biomarkers of oxidative stress. It also reduced NO level, MDA formation and enhanced SOD activity. Pre-treatment with probiotic lysates significantly inhibited the translocation of pro-apoptotic protein (Bax), enhanced anti-apoptotic (Bcl-2) protein levels and prevented release of cyt c to cytosol; suggesting involvement of mitochondrial proteins in protection against APAP induced oxidative cellular damage. Loss in mitochondrial membrane potential due to APAP treatment was prevented in the presence of probiotic lysates. Protective action of El(SN)/La(SN) pretreatment was further supported by prevention of procaspase-3 activation, DNA fragmentation and chromatin condensation, in turn inhibiting APAP induced apoptotic cell death. The results indicate that probiotic preparations modulate crucial end points of oxidative stress induced apoptosis and may be used for management of drug induced liver injury.
Collapse
Affiliation(s)
- S Sharma
- Herbal Research Section, Indian Institute of Toxicology Research 80, MG Marg, Lucknow 226001, Uttar Pradesh, India.
| | | | | |
Collapse
|
11
|
Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and intestinal epithelial HT-29 cells after bacterial attachment. Int J Food Microbiol 2009; 131:224-32. [DOI: 10.1016/j.ijfoodmicro.2009.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/25/2009] [Accepted: 03/01/2009] [Indexed: 12/17/2022]
|
12
|
Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 2009; 379:324-9. [DOI: 10.1016/j.bbrc.2008.12.053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/10/2008] [Indexed: 11/22/2022]
|
13
|
Kim Y, Oh S, Park S, Seo JB, Kim SH. Lactobacillus acidophilus reduces expression of enterohemorrhagic Escherichia coli O157:H7 virulence factors by inhibiting autoinducer-2-like activity. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|