1
|
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 24:11857. [PMID: 37511613 PMCID: PMC10380404 DOI: 10.3390/ijms241411857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin is the most abundant flavonoid in food products, including berries, apples, cauliflower, tea, cabbage, nuts, onions, red wine and fruit juices. It exhibits various biological activities and is used for medical applications, such as treating allergic, inflammatory and metabolic disorders, ophthalmic and cardiovascular diseases, and arthritis. However, its low water solubility may limit quercetin's therapeutic potential. One method of increasing the solubility of active compounds is their coupling to polar molecules, such as sugars. The attachment of a glucose unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Entomopathogenic fungi are biocatalysts well known for their ability to attach glucose and its 4-O-methyl derivative to bioactive compounds, including flavonoids. We investigated the ability of cultures of entomopathogenic fungi belonging to Beauveria, Isaria, Metapochonia, Lecanicillium and Metarhizium genera to biotransform quercetin. Three major glycosylation products were detected: (1), 7-O-β-D-(4″-O-methylglucopyranosyl)-quercetin, (2) 3-O-β-D-(4″-O-methylglucopyranosyl)-quercetin and (3) 3-O-β-D-(glucopyranosyl)-quercetin. The results show evident variability of the biotransformation process, both between strains of the tested biocatalysts from different species and between strains of the same species. Pharmacokinetic and pharmacodynamic properties of the obtained compounds were predicted with the use of cheminformatics tools. The study showed that the obtained compounds may have applications as effective modulators of intestinal flora and may be stronger hepato-, cardio- and vasoprotectants and free radical scavengers than quercetin.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
2
|
Chen Y, Zhang R, Zhang W, Xu Y. Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes soy protein to small peptides and free amino acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
4
|
Wang Y, Zhang R, Feng J, Wu Q, Zhu D, Ma Y. A New 3-Ketosteroid-Δ1–Dehydrogenase with High Activity and Broad Substrate Scope for Efficient Transformation of Hydrocortisone at High Substrate Concentration. Microorganisms 2022; 10:microorganisms10030508. [PMID: 35336084 PMCID: PMC8950399 DOI: 10.3390/microorganisms10030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
3-Ketosteroid-Δ1-dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ1-dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, nine putative kstD genes from different origins were selected and overexpressed in Escherichia coli BL21(DE3). These recombinant enzymes catalyzed the Δ1-desaturation of a variety of steroidal compounds. Among them, the KstD from Propionibacterium sp. (PrKstD) displayed the highest specific activity and broad substrate spectrum. The detailed catalytic characterization of PrKstD showed that it can convert a wide range of 3-ketosteroid compounds with diverse substituents, ranging from substituents at the C9, C10, C11 and C17 position through substrates without C4-C5 double bond, to previously inactive C6-substituted ones such as 11β,17-dihydroxy-6α-methyl-pregn-4-ene-3,20-dione. Reaction conditions were optimized for the biotransformation of hydrocortisone in terms of pH, temperature, co-solvent and electron acceptor. By using 50 g/L wet resting E. coli cells harboring PrKstD enzyme, the conversion of hydrocortisone was about 92.5% within 6 h at the substrate concentration of 80 g/L, much higher than the previously reported results, demonstrating the application potential of this new KstD.
Collapse
|
5
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Mao S, Chen Y, Sun J, Wei C, Song Z, Lu F, Qin HM. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb Technol 2021; 146:109777. [PMID: 33812565 DOI: 10.1016/j.enzmictec.2021.109777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
The Δ1-dehydrogenation of 3-ketosteroid substrates is a crucial reaction in the production of steroids. Although 3-ketosteroid Δ1-dehydrogenase (KsdD) catalyzes this reaction with high efficiency and selectivity, the low stability and high cost of the purified enzyme catalyst have limited its industrial application. In this study, an epoxy support was used to evaluate the covalent immobilization of KsdD from Pimelobacter simplex, and the best androsta-1,4-diene-317-dione (ADD) production was achieved after optimized immobilization of KsdD enzyme in 1.5 M NaH2PO4- Na2HPO4 buffer (pH 6.5) for 12 h at 25 °C. The immobilized KsdD exhibited higher tolerance toward 20 % methanol. The dehydrogenation reaction reached a conversion efficiency of up to 90.0 % in 2 h when using 0.6 mg/mL of 4-androstene-317-dione (AD). The W299A and W299 G mutants of KsdD were also immobilized, and both showed the better catalytic performance with higher kcat/KM values compared with the wild type (WT). The immobilized W299A, W299 G and WT KsdD respectively maintained 70.5, 65.7 and 38.7 % of their initial activity at the end of 15 reaction cycles. Furthermore, the W299A retained 66.3 % of the initial activity after 30 days of incubation at 4 °C, and was more stable than free KsdD, Thus, the immobilized W299A is a promising biocatalyst for steroid dehydrogenation. In this study, we investigated the application of immobilized enzymes for the dehydrogenation of steroids, which will be of great importance for improving the development of green technology and sustainable use of biocatalysts in the steroid manufacturing industry.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Jing Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| |
Collapse
|
7
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
8
|
Biotransformation of Phytosterols to Androst-1,4-Diene-3,17-Dione by Mycobacterium sp. ZFZ Expressing 3-Ketosteroid-Δ1-Dehydrogenase. Catalysts 2020. [DOI: 10.3390/catal10060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As an important hormone drug intermediate, androst-1,4-diene-3,17-dione can be bio-converted from phytosterols. However, separation and purification in the downstream process are very difficult due to the similarity in structure and physiological characteristics between ADD and androstenedione (AD). This phenomenon was correlated to the insufficient enzyme activity of 3-ketosteroid-Δ1-dehydrogenase (KSDD), which specifically catalyzes the C1,2 dehydrogenation of AD. In order to obtain a highly purified ADD from phytosterols, the dehydrogenation effect of different kinds of KSDDs and the transcription effect of four promoter sequences on ksdd were analyzed in Mycobacterium sp. ZFZ (ZFZ), the cell host that transform phytosterols to AD in the oil-aqueous system. A tandem KSDD expression cassette containing strain ZFZ-2111 yielded 2.06 ± 0.09 g L−1 ADD, with a molar ratio of ADD/AD at 41.47:1.00 in 120 h. In waste cooking oil-aqueous media, the proportion of ADD in the fermentation by ZFZ-2111 was 92%. The present study provides a reliable theoretical basis for the step-by-step transformation of phytosterols to ADD.
Collapse
|
9
|
Xiao J, Peng B, Su Z, Liu A, Hu Y, Nomura CT, Chen S, Wang Q. Facilitating Protein Expression with Portable 5'-UTR Secondary Structures in Bacillus licheniformis. ACS Synth Biol 2020; 9:1051-1058. [PMID: 32302094 DOI: 10.1021/acssynbio.9b00355] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5'-untranslated region (5'-UTR) of prokaryotic mRNAs plays an essential role in post-transcriptional regulation. Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, have gained considerable attention as microbial cell factories for the production of various valuable chemicals and industrial proteins. In this work, we developed a portable 5'-UTR sequence for enhanced protein output in the industrial strain B. licheniformis DW2. This sequence contains only ∼30 nt and forms a hairpin structure located right before the open reading frame. The optimized Shine-Dalgarno (SD) sequence was presented as a single strand on the loop of the hairpin for better ribosome recognition and recruitment. By optimizing the free energy of folding, this 5'-element could effectively enhance the expression of eGFP by ∼50-fold and showed good adaptability for other target proteins, including RFP, nattokinase, and keratinase. This 5'-UTR could promote the accessibility of both the SD sequence and start codon, leading to improved efficiency of translation initiation. Furthermore, the hairpin structure protected mRNA against 5'-exonucleases, resulting in enhanced mRNA stability. It is well-known that the stable structure at a ribosome binding site (RBS) impedes initiation in Escherichia coli. In this study, we presented a unique structure at a RBS that can effectively enhance protein production, which is an exception of this prevailing concept. By adjusting a single thermodynamic parameter and holding the other factors affecting protein output constant, a series of 5'-UTR elements with different expression strengths could be rationally designed for wide use in Bacillus sp.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Bing Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Ankun Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Yajing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Christopher T. Nomura
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, New York 13210, United States
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
10
|
Grazon C, Baer RC, Kuzmanović U, Nguyen T, Chen M, Zamani M, Chern M, Aquino P, Zhang X, Lecommandoux S, Fan A, Cabodi M, Klapperich C, Grinstaff MW, Dennis AM, Galagan JE. A progesterone biosensor derived from microbial screening. Nat Commun 2020; 11:1276. [PMID: 32152281 PMCID: PMC7062782 DOI: 10.1038/s41467-020-14942-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements. We use this approach to identify a progesterone-sensing bacterial aTF and to develop this TF into an optical sensor for progesterone. The sensor detects progesterone in artificial urine with sufficient sensitivity and specificity for clinical use, while being compatible with an inexpensive and portable electronic reader for point-of-care applications. Our results provide proof-of-concept for a paradigm of microbially-derived biosensors adaptable to inexpensive, real-time sensor devices.
Collapse
Affiliation(s)
- Chloé Grazon
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - R C Baer
- Department of Microbiology, Boston University, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Uroš Kuzmanović
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Thuy Nguyen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mingfu Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Marjon Zamani
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaoman Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | | | - Andy Fan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Catherine Klapperich
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, MA, 02118, USA.
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ 1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 2019; 191:105366. [PMID: 30991094 DOI: 10.1016/j.jsbmb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the introduction of a double bond between the C1 and C2 atoms of the A-ring of 3-ketosteroid substrates. These enzymes are found in a large variety of microorganisms, especially in bacteria belonging to the phylum Actinobacteria. They play a critical role in the early steps of the degradation of the steroid core. 3-Ketosteroid Δ1-dehydrogenases are of particular interest for the etiology of some infectious diseases, for the production of starting materials for the pharmaceutical industry, and for environmental bioremediation applications. Here we summarize and discuss the biochemical and enzymological properties of these enzymes, their microbial sources, and their natural diversity. The three-dimensional structure of a 3-ketosteroid Δ1-dehydrogenase in connection with the enzyme mechanism is highlighted.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Proteomics, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Bauke W Dijkstra
- The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
12
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. ACTA ACUST UNITED AC 2019; 46:635-647. [DOI: 10.1007/s10295-018-02135-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/31/2018] [Indexed: 11/28/2022]
Abstract
Abstract
Cholesterol oxidase, steroid C27 monooxygenase and 3-ketosteroid-Δ1-dehydrogenase are key enzymes involved in microbial catabolism of sterols. Here, three isoenzymes of steroid C27 monooxygenase were firstly characterized from Mycobacterium neoaurum as the key enzyme in sterol C27-hydroxylation. Among these three isoenzymes, steroid C27 monooxygenase 2 exhibits the strongest function in sterol catabolism. To improve androst-1,4-diene-3,17-dione production, cholesterol oxidase, steroid C27 monooxygenase 2 and 3-ketosteroid-Δ1-dehydrogenase were coexpressed to strengthen the metabolic flux to androst-1,4-diene-3,17-dione, and 3-ketosteroid 9α-hydroxylase, which catalyzes the androst-1,4-diene-3,17-dione catabolism, was disrupted to block the androst-1,4-diene-3,17-dione degradation pathway in M. neoaurum JC-12. Finally, the recombinant strain JC-12S2-choM-ksdd/ΔkshA produced 20.1 g/L androst-1,4-diene-3,17-dione, which is the highest reported production with sterols as substrate. Therefore, this work is hopes to pave the way for efficient androst-1,4-diene-3,17-dione production through metabolic engineering.
Collapse
Affiliation(s)
- Minglong Shao
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Xian Zhang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhiming Rao
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Meijuan Xu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Taowei Yang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhenghong Xu
- 0000 0001 0708 1323 grid.258151.a Laboratory of Pharmaceutical Engineering, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu Province People’s Republic of China
| | - Shangtian Yang
- 0000 0001 2285 7943 grid.261331.4 Department of Chemical and Biomolecular Engineering The Ohio State University 43210 Columbus OH USA
| |
Collapse
|
13
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
14
|
Shao M, Sha Z, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ 1 -dehydrogenase and catalase in Bacillus subtilis. J Appl Microbiol 2017; 122:119-128. [PMID: 27797429 DOI: 10.1111/jam.13336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
AIMS 3-ketosteroid-Δ1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H2 O2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H2 O2 to enhance ADD production. METHODS AND RESULTS The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg-1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksddopt -katA to eliminate the toxic effects of H2 O2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l-1 . CONCLUSIONS This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H2 O2 by co-expressing catalase. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Shao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Sha
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - X Zhang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Rao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - M Xu
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - T Yang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu Province, China
| | - S Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Sukhodolskaya G, Fokina V, Shutov A, Nikolayeva V, Savinova T, Grishin Y, Kazantsev A, Lukashev N, Donova M. Bioconversion of 6-(N-methyl-N-phenyl)aminomethyl androstane steroids by Nocardioides simplex. Steroids 2017; 118:9-16. [PMID: 27864019 DOI: 10.1016/j.steroids.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023]
Abstract
The newly synthesized (α/β)-diastereomers of 6-(N-methyl-N-phenyl)aminomethylandrost-4-ene-3,17-dione (5) and 6-(N-methyl-N-phenyl)aminomethylandrost-4-en-17β-ol-3-one (6) were firstly investigated as substrates for the whole cells of Nocardioides simplex VKM Ac-2033D in comparison with their unsubstituted analogs, - androst-4-ene-3,17-dione (1) and androst-4-en-17β-ol-3-one (2). 1(2)-Dehydroderivatives were identified as the major bioconversion products from all the substrates tested. When using the mixtures of (α/β)-stereoisomers of 5 and 6 as the substrates, only β-stereoisomers of the corresponding 1,4-diene-steroids were formed. Along with 1(2)-dehydrogenation, N. simplex VKM Ac-2033D promoted oxidation of the hydroxyl group at C-17 position of 6: both 6(α) and 6(β) were transformed to the corresponding 17-keto derivatives. No steroid core destruction was observed during the conversion of the 6-substituted androstanes 5 and 6, while it was significant when 1 or 2 was used as the substrate. The results suggested high potentials of N. simplex VKM Ac-2033D for the generation of novel 1(2)-dehydroanalogs.
Collapse
Affiliation(s)
- Galina Sukhodolskaya
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow Region 142290, Russian Federation.
| | - Victoria Fokina
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow Region 142290, Russian Federation.
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow Region 142290, Russian Federation.
| | - Vera Nikolayeva
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow Region 142290, Russian Federation.
| | - Tatiana Savinova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye gory, 1-3, Moscow 119991, Russian Federation.
| | - Yuri Grishin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye gory, 1-3, Moscow 119991, Russian Federation.
| | - Alexey Kazantsev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye gory, 1-3, Moscow 119991, Russian Federation.
| | - Nikolay Lukashev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye gory, 1-3, Moscow 119991, Russian Federation.
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow Region 142290, Russian Federation.
| |
Collapse
|
16
|
Kozłowska E, Urbaniak M, Kancelista A, Dymarska M, Kostrzewa-Susłow E, Stępień Ł, Janeczko T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Adv 2017. [DOI: 10.1039/c7ra04608a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Study on the ability of selected filamentous fungus species to transform dehydroepiandrosterone was performed (DHEA) and interesting DHEA derivatives were obtained with high yield.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology
- Wrocław University of Environmental and Life Sciences
- 51-630 Wrocław
- Poland
| | - Monika Dymarska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Tomasz Janeczko
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| |
Collapse
|
17
|
Abstract
Steroid modifications by selected wild-type and engineered strains of microorganisms became an effective tool for the production of high-valued steroidal drugs and their precursors for the pharmaceutical industry. Some microorganisms are effective at the performance of sterol side-chain degradation, oxyfunctionalization of steroid core, and redox reactions at different positions of the steroid molecule. A number of bioprocesses using steroid-transforming microbial strains are well established on an industrial level. Although a range of biocatalytic methods has been developed, selection of suitable microorganisms, as well as creation of new engineered strains, is of great importance for generation of improved bioprocesses and production schemes for obtaining known and new metabolites with potent biological activity. The achievements in genetic and metabolic engineering of steroid-transforming strains in combination with novel approaches in the enzymatic and whole-cell biocatalysis provide a platform for highly effective and selective biotransformations.Here, we briefly review the current state and prospects in the field of microbial bioconversions with special attention to the application of molecular microbiology methods for the generation of new whole cell biocatalysts.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Russia, 142290.
- Pharmins LTD, Pushchino, 142290, Russia.
| |
Collapse
|
18
|
Jiao S, Li X, Yu H, Yang H, Li X, Shen Z. In situ enhancement of surfactin biosynthesis in Bacillus subtilis
using novel artificial inducible promoters. Biotechnol Bioeng 2016; 114:832-842. [DOI: 10.1002/bit.26197] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Song Jiao
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
| | - Xu Li
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
| | - Huimin Yu
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
| | - Huan Yang
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
| | - Xue Li
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
| | - Zhongyao Shen
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University); Ministry of Education; Beijing 100084 China
| |
Collapse
|
19
|
A mutant form of 3-ketosteroid-Δ1-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. ACTA ACUST UNITED AC 2016; 43:691-701. [DOI: 10.1007/s10295-016-1743-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
Abstract
Abstract
Mycobacterium neoaurum ST-095 and its mutant M. neoaurum JC-12, capable of transforming phytosterol to androst-1,4-diene-3,17-dione (ADD) and androst-4-ene-3,17-dione (AD), produce very different molar ratios of ADD/AD. The distinct differences were related to the enzyme activity of 3-ketosteroid-Δ1-dehydrogenase (KSDD), which catalyzes the C1,2 dehydrogenation of AD to ADD specifically. In this study, by analyzing the primary structure of KSDDI (from M. neoaurum ST-095) and KSDDII (from M. neoaurum JC-12), we found the only difference between KSDDI and KSDDII was the mutation of Val366 to Ser366. This mutation directly affected KSDD enzyme activity, and this result was confirmed by heterologous expression of these two enzymes in Bacillus subtilis. Assay of the purified recombinant enzymes showed that KSDDII has a higher C1,2 dehydrogenation activity than KSDDI. The functional difference between KSDDI and KSDDII in phytosterol biotransformation was revealed by gene disruption and complementation. Phytosterol transformation results demonstrated that ksdd I and ksdd II gene disrupted strains showed similar ADD/AD molar ratios, while the ADD/AD molar ratios of the ksdd I and ksdd II complemented strains were restored to their original levels. These results proved that the different ADD/AD molar ratios of these two M. neoaurum strains were due to the differences in KSDD. Finally, KSDD structure analysis revealed that the Val366Ser mutation could possibly play an important role in stabilizing the active center and enhancing the interaction of AD and KSDD. This study provides a reliable theoretical basis for understanding the structure and catalytic mechanism of the Mycobacteria KSDD enzyme.
Collapse
|
20
|
Yu X, Xu J, Liu X, Chu X, Wang P, Tian J, Wu N, Fan Y. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Sci Rep 2015; 5:18405. [PMID: 26673679 PMCID: PMC4682092 DOI: 10.1038/srep18405] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022] Open
Abstract
A promoter that enabled high-level expression of the target gene during the stationary phase in the absence of an inducer would facilitate the efficient production of heterogeneous proteins at a low cost. In this study, a genome-scale microarray-based approach was employed to identify promoters that induced high-level expression of the target genes in Bacillus subtilis from the late log phase to the stationary phase without an inducer. Eleven candidate promoters were selected based on B. subtilis microarray data and the quantitative PCR analysis. Among the selected promoters, Pylb exhibited the highest activity with the reporter bgaB during the stationary phase. Compared with P43 (a commonly used constitutive promoter), promoter Pylb could express two reporter genes (egfp and mApple), and the expression levels of EGFP and RFP were 7.8- and 11.3-fold higher than that of P43, respectively. This finding was verified by overexpression of the genes encoding pullulanase and organophosphorus hydrolase, the activities of which were 7.4- and 2.3-fold higher, respectively, when driven by Pylb compared with P43. Therefore, our results suggest that the Pylb promoter could be used to overexpress target genes without an inducer; this method could facilitate the identification and evaluation of attractive promoters in the genome.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangtao Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Li H, Xu Z. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS One 2015; 10:e0137658. [PMID: 26352898 PMCID: PMC4564235 DOI: 10.1371/journal.pone.0137658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.
Collapse
Affiliation(s)
- Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
- * E-mail:
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
22
|
Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. J Ind Microbiol Biotechnol 2015; 42:507-13. [PMID: 25572208 DOI: 10.1007/s10295-014-1577-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium neoaurum TCCC 11028 (MNR) and M. neoaurum TCCC 11028 M3 (MNR M3) significantly differ in the ratio of androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) produced. The large fluctuations are related to the dehydrogenation activity of 3-ketosteroid-Δ(1)-dehydrogenase (KsdD). Analysis of the primary structure of KsdD showed that the Ser-138 of KsdD-MNR changed to Leu-138 of KsdD-MNR M3 because of C413T in the ksdD gene. This phenomenon directly affected KsdD activity. The effect of the primary structure of KsdD on dehydrogenation activity was confirmed through exogenous expression. Whole-cell transformation initially revealed that KsdD-MNR showed a higher dehydrogenation activity than KsdD-MNR M3. Then, ksdD gene replacement strain was constructed by homologous recombination. The results of steroid transformation experiments showed that the ability of the MNR M3ΔksdD::ksdD-MNR strain to produce ADD was improved and it returned to the similar level of the MNR strain. This result indicated that the ADD/AD ratio of the two M. neoaurum strains was influenced by the difference in ksdD. The mechanism by which residue mutations alter enzyme activity may be connected with the crystal structure of KsdD from Rhodococcus erythropolis SQ1. As a key amino acid residue in the active center position, Ser-138 played an important role in maintaining the active center in the hydrophobic environment of KsdD. This study may serve as a basis for future studies on the structural analysis and catalytic mechanism of dehydrogenase.
Collapse
|
23
|
Characterization and application of fusidane antibiotic biosynethsis enzyme 3-ketosteroid-∆1-dehydrogenase in steroid transformation. Appl Microbiol Biotechnol 2012; 96:133-42. [DOI: 10.1007/s00253-011-3855-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 11/26/2022]
|
24
|
Comparison of P aprE , P amyE , and P P43 promoter strength for β-galactosidase and staphylokinase expression in Bacillus subtilis. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-007-0102-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|