1
|
Strasser A, Wittmann HJ, Buschauer A, Schneider EH, Seifert R. Species-dependent activities of G-protein-coupled receptor ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 2012; 34:13-32. [PMID: 23228711 DOI: 10.1016/j.tips.2012.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
Histamine is a biogenic amine that exerts its biological effects as a neurotransmitter and local mediator via four histamine receptor (HR) subtypes (H(x)Rs) - H(1)R, H(2)R, H(3)R, and H(4)R - belonging to the superfamily of G-protein-coupled receptors (GPCRs). All four H(x)Rs exhibit pronounced differences in agonist and/or antagonist pharmacology among various species orthologs. The species differences constitute a problem for animal experiments and drug development. This problem applies to GPCRs with diverse ligands. Here, we summarize our current knowledge on H(x)R orthologs as a case study for species-dependent activity of GPCR ligands. We show that species-specific pharmacology also provides unique opportunities to study important aspects of GPCR pharmacology in general, including ligand-binding sites, the roles of extracellular domains in ligand binding and receptor activation, agonist-independent (constitutive) receptor activity, thermodynamics of ligand/receptor interaction, receptor-activation mechanisms, and ligand-specific receptor conformations.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
2
|
Knight PJK, Pfeifer TA, Grigliatti TA. A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines. Anal Biochem 2003; 320:88-103. [PMID: 12895473 DOI: 10.1016/s0003-2697(03)00354-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insect cells are an underexplored resource for functional G-protein-coupled receptor (GPCR) assays, despite a strong record in biochemical (binding) assays. Here we describe the use of vectors capable of creating stably transformed insect cell lines to generate a cell-based functional GPCR assay. This assay employs the luminescent photoprotein aequorin and the promiscuous G-protein subunit Galpha16 and is broadly applicable to human GPCRs. We demonstrate that the assay can quantitate ligand concentration-activity relationships for seven different human GPCRs, can differentiate between partial and full agonists, and can determine rank order potencies for both agonists and antagonists that match those seen with other assay systems. Human Galpha16 improves signal strength but is not required for activity with some receptors. The coexpression of human and bovine betagamma subunits and/or phospholipase Cbeta makes no difference to agonist efficacy or potency. Two different receptors expressed in the same cell line respond to their specific agonists, and two different cell lines (Sf9 and High 5) are able to functionally detect the same expressed GPCR. Sf9 cells have the capability to produce fully functional human receptors, allied to a low background of endogenous receptors, and so are a valuable system for investigating orphan GPCRs and receptor dimerization.
Collapse
Affiliation(s)
- Peter J K Knight
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Rm 3444, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
3
|
Dickenson JM. Stimulation of protein kinase B and p70 S6 kinase by the histamine H1 receptor in DDT1MF-2 smooth muscle cells. Br J Pharmacol 2002; 135:1967-76. [PMID: 11959800 PMCID: PMC1573327 DOI: 10.1038/sj.bjp.0704664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2001] [Revised: 12/04/2001] [Accepted: 02/01/2002] [Indexed: 12/19/2022] Open
Abstract
1. Previous studies have shown that the histamine H(1) receptor activates p42/p44 mitogen-activated protein kinases (MAPK) in DDT(1)MF-2 smooth muscle cells via a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway. In this study the effect of histamine H(1) receptor stimulation on protein kinase B (PKB) and p70 S6 kinase, both of which are downstream targets of PI-3K, has been investigated. Increases in PKB and p70 S6 kinase activation were monitored by Western blotting using phospho-specific PKB (Ser(473)) and p70 S6 kinase (Thr(421)/Ser(424)) antibodies. 2. Histamine stimulated time and concentration-dependent increases in the phosphorylation of PKB and p70 S6 kinase in DDT(1)MF-2 cells. Both responses were completely inhibited by the histamine H(1) receptor antagonist mepyramine and following pre-treatment with pertussis toxin, to block G(i)/G(o) protein dependent pathways. 3. The PI-3K inhibitors wortmannin (IC(50) 5.9+/-0.5 nM) and LY 294002 (IC(50) 6.9+/-0.8 microM) attenuated the increase in PKB phosphorylation induced by histamine (100 microM) in a concentration-dependent manner. 4. Histamine-induced increases in p70 S6 kinase phosphorylation were partially sensitive to rapamycin (20 nM; 68% inhibition) but completely blocked by wortmannin (100 nM), LY 294002 (30 microM) and the MAPK kinase inhibitor PD 98059 (50 microM). 5. In summary, these data demonstrate that the histamine H(1) receptor stimulates PKB and p70 S6 kinase phosphorylation in DDT(1)MF-2 smooth muscle cells. However, functional studies revealed that histamine does not stimulate DDT(1)MF-2 cell proliferation or attenuate staurosporine-induced caspase-3 activity. The challenge for future research will be to link the stimulation of these kinase pathways with the physiological and pathophysiological roles of the histamine H(1) receptor.
Collapse
Affiliation(s)
- John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
4
|
Robinson AJ, Dickenson JM. Activation of the p38 and p42/p44 mitogen-activated protein kinase families by the histamine H(1) receptor in DDT(1)MF-2 cells. Br J Pharmacol 2001; 133:1378-86. [PMID: 11498525 PMCID: PMC1621152 DOI: 10.1038/sj.bjp.0704200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The mitogen-activated protein kinases (MAPKs) consist of the p42/p44 MAPKs and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK. In this study we have examined the effect of histamine H(1) receptor activation on MAPK pathway activation in the smooth muscle cell line DDT(1)MF-2. 2. Histamine stimulated time and concentration-dependent increases in p42/p44 MAPK activation in DDT(1)MF-2 cells. Responses to histamine were inhibited by the histamine H(1) receptor antagonist mepyramine (K(D) 3.5 nM) and following pre-treatment with pertussis toxin (PTX; 57% inhibition). 3. Histamine-induced increases in p42/p44 MAPK activation were blocked by inhibitors of MAPK kinase 1 (PD 98059), tyrosine kinase (genistein and tyrphostin A47), phosphatidylinositol 3-kinase (wortmannin and LY 294002) and protein kinase C (Ro 31-8220; 10 microM; 41% inhibition). Inhibitors of Src tyrosine kinase (PP2) and the epidermal growth factor tyrosine kinase (AG1478) were without effect. Removal of extracellular Ca(2+), chelation of intracellular Ca(2+) with BAPTA and inhibition of focal adhesion assembly (cytochalasin D) had no significant effect on histamine-induced p42/p44 MAPK activation. 4. Histamine stimulated time and concentration-dependent increases in p38 MAPK activation in DDT(1)MF-2 cells but had no effect on JNK activation. Histamine-induced p38 MAPK activation was inhibited by pertussis toxin (74% inhibition) and the p38 MAPK inhibitor SB 203580 (95% inhibition). 5. In summary, we have shown the histamine H(1) receptor activates p42/p44 MAPK and p38 MAPK signalling pathways in DDT(1)MF-2 smooth muscle cells. Interestingly, signalling to both pathways appears to involve histamine H(1) receptor coupling to G(i)/G(o)-proteins.
Collapse
Affiliation(s)
- Alex J Robinson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
| | - John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
- Author for correspondence:
| |
Collapse
|
5
|
Walker EM, Bispham JR, Hill SJ. Nonselective effects of the putative phospholipase C inhibitor, U73122, on adenosine A1 receptor-mediated signal transduction events in Chinese hamster ovary cells. Biochem Pharmacol 1998; 56:1455-62. [PMID: 9827577 DOI: 10.1016/s0006-2952(98)00256-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine A1 receptors can signal, through Gi/o proteins, to inhibit adenylyl cyclase activity and also to stimulate phosphoinositide hydrolysis and the subsequent release of intracellular Ca2+ stores. The aminosteroid U73122 (1-[6-1[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1 H-pyrrole-2,5-dione) has been widely used as an inhibitor of phospholipase C, the enzyme mediating phosphoinositide hydrolysis. Using U73122, we sought to selectively block signalling through the phospholipase C pathway, in Chinese hamster ovary (CHO-K1) cells heterologously expressing human adenosine A1 receptors. U73122 inhibited A1 receptor-mediated phosphoinositide hydrolysis, as measured by total inositol phosphate accumulation, over the concentration range 1-15 microM. However, over the same concentration range, it also appeared to inhibit A1 receptor-mediated inhibition of forskolin-stimulated cyclic AMP accumulation, A1 receptor agonist-promoted [35S]GTP-gammaS binding, and at the higher concentrations (10-15 microM) produced marked morphological changes, leading to cytolysis. The structural analogue of U73122, U73343 (1-[6-[[17beta-3-methoxyestra-1,3,5(10-trien-17-yl]amino]hexyl]-2, 5-pyrrolidone-dione), typically used as an inactive control compound, had little effect on these events. The data suggest that U73122 is not a selective inhibitor of phospholipase C activity, interfering with adenosine A1 receptor signalling generally, either at the pre-effector level involving Gi/o proteins, or as a consequence of the morphological changes it induces.
Collapse
Affiliation(s)
- E M Walker
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
6
|
Kramer K, Elz S, Pertz HH, Schunack W. N alpha-alkylated derivatives of 2-phenylhistamines: synthesis and in vitro activity of potent histamine H1-receptor agonists. Bioorg Med Chem Lett 1998; 8:2583-8. [PMID: 9873585 DOI: 10.1016/s0960-894x(98)00461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New potent N alpha-alkylated histamine H1-receptor agonists have been prepared and functionally evaluated for partial agonist potency and selectivity. N alpha-Methyl-2-(3-trifluoromethylphenyl)histamine contracts ileal segments and aortic rings of guinea-pig with a relative potency of 174% (95% confid. lim. 161-188%) and 217% (164-287%), respectively (histamine: 100%) and is the most potent H1 receptor agonist described so far.
Collapse
Affiliation(s)
- K Kramer
- Fachbereich Pharmazie, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
7
|
Selbie LA, King NV, Dickenson JM, Hill SJ. Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J 1997; 328 ( Pt 1):153-8. [PMID: 9359846 PMCID: PMC1218899 DOI: 10.1042/bj3280153] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuropeptide Y (NPY) significantly potentiates the constrictor actions of noradrenaline and ATP on blood vessels via a pertussis toxin (PTX)-sensitive mechanism involving Gi/o (alpha beta gamma) protein subunits (Gi/o, GTP-binding proteins sensitive to PTX). In Chinese hamster ovary K1 (CHO K1) cells expressing specific receptors for these neurotransmitters, stimulation of Gi/o protein-coupled receptors for NPY and other neurotransmitters can augment the Gq/11-coupled (Gq/11, GTP-binding proteins insensitive to PTX) alpha 1B adrenoceptor- or ATP receptor-induced arachidonic acid (AA) release and inositol phosphate (IP) production (early events which may precede vasoconstriction). In this study, we have assessed the role of G beta gamma subunits in the synergistic interaction between Gi/o- (NPY Y1, 5-hydroxytryptamine 5-HT1B, adenosine A1) and Gq/11- [ATP P2Y2 (P2U)]-coupled receptors on AA release by using the specific abilities of regions of the beta-adrenergic receptor kinase (beta ARK1 residues 495-689) and the transducin alpha subunit to associate with G-protein beta gamma subunit dimers and to act as G beta gamma subunit scavengers. Transient expression of beta ARK1(495-689) in CHO K1 cells heterologously expressing NPY Y1 receptors had no significant effect on the PTX-insensitive ability of ATP to stimulate AA release. Stimulation of NPY Y1 receptors (as well as the endogenous 5-hydroxytryptamine 5-HT1B receptor and the transiently expressed human adenosine A1 receptor) resulted in a PTX-sensitive augmentation of ATP-stimulated AA release, which was inhibited by expression of both G beta gamma subunit scavengers. Expression of beta ARK1(495-689) similarly inhibited NPY Y1 receptor augmentation of ATP-stimulated IP production (a measure of phospholipase C activity), a step thought to precede the NPY Y1 receptor-augmented protein kinase C-dependent AA release previously observed in these cells. These experiments demonstrate that G beta gamma subunits, as inhibited by two different G beta gamma scavengers, significantly contribute to the synergistic interaction between NPY Y1 Gi/o- and Gq/11-coupled receptor activity, and are required for the augmentation of IP production and AA release observed in this model cell system.
Collapse
Affiliation(s)
- L A Selbie
- Department of Physiology and Pharmacology, Queen's Medical Centre, University of Nottingham, U.K
| | | | | | | |
Collapse
|
8
|
Klinker JF, Wenzel-Seifert K, Seifert R. G-protein-coupled receptors in HL-60 human leukemia cells. GENERAL PHARMACOLOGY 1996; 27:33-54. [PMID: 8742493 DOI: 10.1016/0306-3623(95)00107-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. HL-60 human leukemia cells are a widely employed model system for the analysis of signal transduction processes mediated via regulatory heterotrimeric guanine nucleotide-binding proteins (G-proteins). HL-60 promyelocytes are pluripotent and can be differentiated into neutrophilic or monocytic cells. 2. HL-60 cells express formyl peptide-, complement C5a-, leukotriene B4 (LTB4)- and platelet-activating factor receptors, receptors for purine and pyrimidine nucleotides, histamine H1- and H2-receptors, beta 2-adrenoceptors and prostaglandin receptors. 3. The major G-proteins in HL-60 cells are pertussis toxin (PTX)-sensitive Gi-proteins (Gi2 > Gi3). Gs-proteins and G-proteins of the Gq-family (e.g., G16) are expressed, too. 4. G-protein-regulated effector systems in HL-60 cells are adenylyl cyclase and phospholipase C-beta 2 (PLC-beta 2) and, possibly, phospholipase D (PLD), nonselective cation (NSC) channels and NADPH oxidase. 5. The expression of signal transduction pathways in HL-60 cells strongly depends on the differentiation state of cells. 6. Formyl peptides, via Gi-proteins, mediate activation of PLC, PLD, NSC channels, NADPH oxidase and azurophilic granule release and are referred to as full secretagogues. In dibutyryl cAMP (Bt2cAMP)-differentiated HL-60 cells, C5a and LTB4 are partial and incomplete secretagogues, respectively. There are substantial differences in the Gi-protein activations induced by formyl peptides, C5a and LTB4. 7. In HL-60 promyelocytes, purine and pyrimidine nucleotides mediate activation of PLC and NSC channels largely via PTX-insensitive G-proteins and induce functional differentiation. In Bt2cAMP-differentiated HL-60 cells, they additionally activate PLD, NADPH oxidase and granule release via PTX-sensitive and -insensitive pathways. ATP and UTP are partial secretagogues. Multiple types of receptors (i.e., P2Y- and P2U-receptors and pyrimidinocyeptors) may mediate the effects of nucleotides in HL-60 cells. 8. Bt2cAMP- and 1 alpha,25-dihydroxycholecalciferol-differentiated HL-60 cells express H1-receptors coupled to Gi-proteins and PTX-insensitive G-proteins. In the former cells, histamine mediates activation of PLC and NSC channels, and in the latter, activation of NSC channels. Histamine is an incomplete secretagogue in these cells. 9. HL-60 promyelocytes express H2-receptors coupled to adenylyl cyclase, PLC, and NSC channels. There are substantial differences in the agonist/antagonist profiles of H2-receptor-mediated cAMP formation and rises in cytosolic Ca2+ concentration, indicative of the involvement of different H2-receptor subtypes. H2-receptors mediate functional differentiation of HL-60 cells. 10. Certain cationic-amphiphilic histamine receptor ligands (i.e., 2-substituted histamines, lipophilic guanidines, and a histamine trifluoromethyl-toluidide derivative) show stimulatory effects in HL-60 cells that are attributable to receptor-independent activation of Gi-proteins.
Collapse
MESH Headings
- Antigens, CD
- Calcium Channels/metabolism
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/physiology
- HL-60 Cells/chemistry
- HL-60 Cells/drug effects
- HL-60 Cells/pathology
- HL-60 Cells/physiology
- Humans
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neutrophils/chemistry
- Platelet Membrane Glycoproteins/pharmacology
- Receptor, Anaphylatoxin C5a
- Receptors, Cell Surface
- Receptors, Complement
- Receptors, Formyl Peptide
- Receptors, G-Protein-Coupled
- Receptors, Histamine
- Receptors, Immunologic
- Receptors, Peptide
- Receptors, Purinergic
- Signal Transduction/physiology
Collapse
Affiliation(s)
- J F Klinker
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
9
|
Klinker JF, Seifert R. [Receptor independent activation of G proteins]. PHARMAZIE IN UNSERER ZEIT 1995; 24:250-63. [PMID: 7480088 DOI: 10.1002/pauz.19950240505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J F Klinker
- Howard Hughes Medical Institute, Research Laboratories, Beckman Center for Molecular and Genetic Medicine, Stanford University Medical Center, California 94304-5428, USA
| | | |
Collapse
|
10
|
Megson AC, Dickenson JM, Townsend-Nicholson A, Hill SJ. Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br J Pharmacol 1995; 115:1415-24. [PMID: 8564200 PMCID: PMC1908880 DOI: 10.1111/j.1476-5381.1995.tb16632.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effect of adenosine A1-receptor and P2-purinoceptor agonists on [3H]-inositol phosphate accumulation has been investigated in CHO-K1 cells transfected with the human adenosine A1-receptor. 2. Adenosine receptor agonists stimulated [3H]-inositol phosphate accumulation in CHO-K1 cells with a rank potency order of N6-cyclopentyladenosine (CPA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-chloroadenosine > N6-2-(4-aminophenyl) ethyladenosine (APNEA). The responses to both CPA and APNEA were antagonized by the A1 selective antagonist, 1,3-dipropylcyclopentylxanthine (DPCPX) yielding KD values of 1.2 nM and 4.3 nM respectively. 3. ATP, UTP and ATP gamma S were also able to stimulate [3H]-inositol phosphate accumulation in these cells with EC50 values of 1.9 microM, 1.3 microM and 5.0 microM respectively. 2-Methyl-thio-ATP was a weak agonist of this response (EC50 > 100 microM). 4. The [3H]-inositol phosphate response to CPA was completely attenuated by pertussis toxin treatment (24 h; 100 ng ml-1). In contrast, the responses to ATP, UTP and ATP gamma S were only reduced by circa 30% in pertussis toxin-treated cells. 5. The simultaneous addition of CPA and either ATP, UTP or ATP gamma S produced a large augmentation of [3H]-inositol phospholipid hydrolysis. This was due to an increase in the maximal response and was significantly greater than the predicted additive response for activation of these two receptor systems. The synergy was not observed in pertussis toxin-treated cells. 6. No synergy was observed between the [3H]-inositol phosphate responses to histamine and ATP in CHO-K1 cells transfected with the bovine histamine H1-receptor. In these cells the response to histamine was completely resistant to inhibition by pertussis toxin treatment. 7. This study provides a clear demonstration of a synergy between pertussis toxin-sensitive and insensitive receptor systems in a model cell system which is an ideal host for transfected cDNA sequences. This model system should provide a unique opportunity to unravel the mechanisms underlying this example of receptor cross-talk involving phospholipase C.
Collapse
Affiliation(s)
- A C Megson
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | | | | | |
Collapse
|
11
|
Peakman MC, Hill SJ. Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes. Br J Pharmacol 1995; 115:801-10. [PMID: 8548180 PMCID: PMC1908518 DOI: 10.1111/j.1476-5381.1995.tb15004.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effects of adenosine A1 receptor stimulation on basal and histamine-stimulated levels of intracellular free calcium ion concentration ([Ca2+]i) have been investigated in primary astrocyte cultures derived from neonatal rat forebrains. 2. Histamine (0.1 microM-1 mM) caused rapid, concentration-dependent increases in [Ca2+]i over basal levels in single type-2 astrocytes in the presence of extracellular calcium. A maximum mean increase of 1,468 +/- 94 nM over basal levels was recorded in 90% of type-2 cells treated with 1 mM histamine (n = 49). The percentage of type-2 cells exhibiting calcium increases in response to histamine appeared to vary in a concentration-dependent manner. However, the application of 1 mM histamine to type-1 astrocytes had less effect, eliciting a mean increase in [Ca2+]i of 805 +/- 197 nM over basal levels in only 30% of the cells observed (n = 24). 3. In the presence of extracellular calcium, the A1 receptor-selective agonist, N6-cyclopentyladenosine (CPA, 10 microM), caused a maximum mean increase in [Ca2+]i of 1,110 +/- 181 nM over basal levels in 30% of type-2 astrocytes observed (n = 53). The size of this response was concentration-dependent; however, the percentage of type-2 cells exhibiting calcium increases in response to CPA did not appear to vary in a concentration-dependent manner. A mean calcium increase of 605 +/- 89 nM over basal levels was also recorded in 23% of type-1 astrocytes treated with 10 microM CPA (n = 30). 4. In the absence of extracellular calcium, in medium containing 0.1 mM EGTA, a mean increase in [Ca2+]i of 504 +/- 67 nM over basal levels was recorded in 41% of type-2 astrocytes observed (n = 41) after stimulation with 1 microM CPA. However, in the presence of extracellular calcium, pretreatment with the A1 receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, for 5-10 min before stimulation with 1 microM CPA, completely antagonized the response in 100% of the cells observed. 5. In type-2 astrocytes, prestimulation with 10 nM CPA significantly increased the size of the calcium response produced by 0.1 microM histamine and the percentage of responding cells. Treatment with 0.1 microM histamine alone caused a mean calcium increase of 268 +/- 34 nM in 41% of the cells observed (n = 34). After treatment with 10 nM CPA, mean calcium increase of 543 +/- 97 nM was recorded in 100% of the cells observed (n = 33). 6. These data indicate that adenosine Al receptors couple to intracellular calcium mobilization and extracellular calcium influx in type-1 and type-2 astrocytes in primary culture. In addition, the simultaneous activation of adenosine Al receptors on type-2 astrocytes results in an augmentation of the calcium response to histamine H1 receptor stimulation.
Collapse
Affiliation(s)
- M C Peakman
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
12
|
ORAL COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb17200.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Abstract
In this article, we review the recent developments in the field of histamine research. Besides the description of pharmacological tools for the H1, H2 and H3 receptor, specific attention is paid to both the molecular aspects of the receptor proteins, including the recent cloning of the receptor genes, and their respective signal transduction mechanisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Gene Expression Regulation/genetics
- Histamine Agonists/pharmacology
- Histamine Antagonists/pharmacology
- Humans
- Ligands
- Molecular Sequence Data
- Receptors, Histamine/chemistry
- Receptors, Histamine/classification
- Receptors, Histamine/genetics
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/chemistry
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/chemistry
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Receptors, Histamine H3/chemistry
- Receptors, Histamine H3/genetics
- Receptors, Histamine H3/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- R Leurs
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije, Universiteit, The Netherlands
| | | | | |
Collapse
|
14
|
POSTER COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb16307.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Sipma H, Duin M, Hoiting B, den Hertog A, Nelemans A. Regulation of histamine- and UTP-induced increases in Ins(1,4,5)P3, Ins (1,3,4,5)P4 and Ca2+ by cyclic AMP in DDT1 MF-2 cells. Br J Pharmacol 1995; 114:383-90. [PMID: 7881738 PMCID: PMC1510268 DOI: 10.1111/j.1476-5381.1995.tb13238.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Stimulation of P2U-purinoceptors with UTP or histamine H1-receptors with histamine gave rise to the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) in DDT1 MF-2 smooth muscle cells. 2. Stimulation of P2U-purinoceptors or histamine H1-receptors caused an increase in cytoplasmic Ca2+, consisting of an initial peak, representing the release of Ca2+ from internal stores and a sustained phase representing Ca2+ influx. 3. The P2U-purinoceptor-mediated Ca(2+)-entry mechanism was more sensitive to UTP than Ca(2+)-mobilization (EC50: 3.3 microM +/- 0.4 microM vs 55.1 microM +/- 9.2 microM), in contrast to these processes activated by histamine H1-receptors (EC50: 5.8 microM +/- 0.6 microM vs 3.1 microM +/- 0.5 microM). 4. Pre-stimulation of cells with several adenosine 3':5'-cyclic monophosphate (cyclic AMP) elevating agents, reduced the histamine H1-receptor-mediated formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin completely inhibited Ins(1,4,5)P3 formation (IC50: 158 +/- 24 nM) whereas Ins(1,3,4,5)P4 formation was inhibited by only 45% (IC50: 173 +/- 16 nM). The P2U-purinoceptor-mediated production of these inositol phosphates was not affected by cyclic AMP. 5. Forskolin and isoprenaline reduced the histamine-induced increase in cytoplasmic Ca2+, as measured in Ca2+ containing medium and in nominally Ca(2+)-free medium but did not change the UTP-induced increase in cytoplasmic Ca2+. 6. These results clearly demonstrate that cyclic AMP differentially regulates components of the histamine induced phospholipase C signal transduction pathway. Furthermore, cyclic AMP does not affect the phospholipase C pathway activated by stimulation of P2U-purinoceptors in DDT1 MF-2 cells.
Collapse
Affiliation(s)
- H Sipma
- Department of Pharmacology/Clinical Pharmacology, Groningen Institute for Drugs Studies, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Peakman MC, Hill SJ. Endogenous expression of histamine H1 receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP. Br J Pharmacol 1994; 113:1554-60. [PMID: 7889313 PMCID: PMC1510483 DOI: 10.1111/j.1476-5381.1994.tb17173.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The effects of histamine receptor agonists and antagonists on phospholipid hydrolysis in rat-derived C6 glioma cells have been investigated. 2. Histamine H1 receptor-stimulation caused a concentration-dependent increase in the accumulation of total [3H]-inositol phosphates in cells prelabelled with [3H]-myo-inositol. The rank order of agonist potencies was histamine (EC50 = 24 microM) > N alpha-methylhistamine (EC50 = 31 microM) > 2-thiazolylethylamine (EC50 = 91 microM). 3. The response to 0.1 mM histamine was antagonized in a concentration-dependent manner by the H1-antagonists, mepyramine (apparent Kd = 1 nM) and (+)-chlorpheniramine (apparent Kd = 4 nM). In addition, (-)-chlorpheniramine was more than two orders of magnitude less potent than its (+)-stereoisomer. 4. Elevation of intracellular cyclic AMP accumulation with forskolin (10 microM, EC50 = 0.3 microM), isoprenaline (1 microM, EC50 = 4 nM) or rolipram (0.5 mM), significantly reduced the histamine-mediated (0.1 mM) inositol phosphate response by 37%, 43% and 26% respectively. In contrast, 1,9-dideoxyforskolin did not increase cyclic AMP accumulation and had no effect on the phosphoinositide response to histamine. 5. These data indicate the presence of functionally coupled, endogenous histamine H1 receptors in C6 glioma cells. Furthermore, the results also indicate that H1 receptor-mediated phospholipid hydrolysis is inhibited by the elevation of cyclic AMP levels in these cells.
Collapse
Affiliation(s)
- M C Peakman
- Department of Physiology & Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
17
|
Dickenson JM, Hill SJ. Selective potentiation of histamine H1-receptor stimulated calcium responses by 1,4-dithiothreitol in DDT1MF-2 cells. Biochem Pharmacol 1994; 48:1721-8. [PMID: 7980641 DOI: 10.1016/0006-2952(94)90457-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of 1,4-dithiothreitol (DTT) on agonist-stimulated increases in intracellular free calcium concentration ([Ca2+]i) has been investigated in the smooth muscle cell line, DDT1MF-2, derived from hamster vas deferens. Pretreatment with DTT (1 mM) produced a large leftward parallel shift in concentration-response curve for histamine H1-receptor mediated increases in [Ca2+]i. The EC50 values for H1-receptor stimulated increases in [Ca2+]i in the absence and presence of DTT were 11.3 +/- 1.5 microM (N = 6) and 0.52 +/- 0.15 microM (N = 6), respectively. DTT had no significant effect on the maximum Ca2+ response elicited by histamine (100 microM). In the presence of DTT the partial H1-receptor agonist 2-pyridylethylamine (100 microM) increased [Ca2+]i from 112 +/- 14 nM to 237 +/- 24 nM (N = 10). In control cells 2-pyridylethylamine (100 microM) did not elicit a Ca2+ response. DTT had no significant effect on the maximum Ca2+ response elicited by 1 mM 2-pyridylethylamine. The enhancement of histamine H1-receptor Ca2+ responses by DTT was reversed by the sulphydryl oxidizing agent dithiobis-(2-nitrobenzoic acid). DTT had no significant effect on adenosine A1-, bradykinin and ATP-receptor stimulated increases in [Ca2+]i. [3H]mepyramine binding experiments confirmed that DTT increased agonist affinity. DTT produced a small, but significant, leftward shift in concentration-response curve for histamine displacement of [3H]mepyramine binding. These data suggest that DTT potentiates H1-receptor mediated Ca2+ responses by increasing agonist affinity.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | |
Collapse
|
18
|
Sipma H, den Hertog A, Nelemans A. The phospholipase C activating P2U purinoceptor also inhibits cyclicAMP formation in DDT1 MF-2 smooth muscle cells. Eur J Pharmacol 1994; 268:431-7. [PMID: 7805768 DOI: 10.1016/0922-4106(94)90069-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The P2U purinoceptor mediated effect on cellular cAMP was investigated in DDT1 MF-2 smooth muscle cells. Stimulation of these receptors by ATP or UTP caused a pronounced decrease of about 50% in cellular cAMP levels in forskolin or isoprenaline pretreated cells. This action of the nucleotides was concentration dependent with an IC50 of 9.4 +/- 0.2 microM and 29.0 +/- 0.5 microM for UTP and ATP, respectively and was inhibited by the P2-purinoceptor antagonist suramin. The cAMP level appeared to be modified by intracellular Ca2+, represented by an initial decline in cAMP. Neither inactivation of protein kinase C by staurosporine nor elevated cytoplasmic Ca2+ concentrations interfered with the sustained decrease in cAMP levels induced by ATP or UTP, showing that this effect is not mediated via the phospholipase C pathway known to be activated after P2U purinoceptor stimulation in DDT1 MF-2 cells. Pertussis toxin inhibited the action of these nucleotides on the cellular cAMP level. It can be concluded that the P2U purinoceptor in DDT1 MF-2 cells is coupled to different G-proteins, activating phospholipase C and inhibiting adenylyl cyclase activity.
Collapse
Affiliation(s)
- H Sipma
- Groningen Institute for Drugs Studies (GIDS), Department of Pharmacology/Clinical Pharmacology, University of Groningen, Netherlands
| | | | | |
Collapse
|
19
|
Dickenson JM, Hill SJ. Characteristics of [3H]mepyramine binding in DDT1MF-2 cells: evidence for high affinity binding to a functional histamine H1 receptor. Eur J Pharmacol 1994; 268:257-62. [PMID: 7957647 DOI: 10.1016/0922-4106(94)90196-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding characteristics of [3H]mepyramine to histamine H1 receptors in the smooth muscle cell line, DDT1MF-2, have been investigated. Competition binding experiments produced dissociation constants (Ki) for mepyramine, (+)-chlorpheniramine, and promethazine of 3.4 nM, 2.6 nM and 0.66 nM, respectively. Saturation binding using [3H]mepyramine produced a Kd of 2.1 nM and a Bmax of 47 fmol/mg protein. These data suggest that a high-affinity [3H]mepyramine binding site can be detected with the characteristics of the "classical" histamine H1 receptor. The low-affinity [3H]mepyramine binding site reported previously [Mitsuhashi, M. and Payan, D.G. (1988) J. Cell. Physiol. 134, 367-375] is predominantly to a secondary [3H]mepyramine site. The "low affinity" or secondary [3H]mepyramine binding site on DDT1MF-2 cells is insensitive to quinine (10 microM) and is therefore distinct from the [3H]mepyramine binding protein found in rat liver.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
20
|
Dickenson JM, Hill SJ. Intracellular cross-talk between receptors coupled to phospholipase C via pertussis toxin-sensitive and insensitive G-proteins in DDT1MF-2 cells. Br J Pharmacol 1993; 109:719-24. [PMID: 8358567 PMCID: PMC2175649 DOI: 10.1111/j.1476-5381.1993.tb13633.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. The effect on intracellular free calcium concentration ([Ca2+]i) of simultaneous activation of receptors coupled to phospholipase C via pertussis toxin (PTX)-sensitive and -insensitive G-proteins has been investigated in the hamster vas deferens smooth muscle cell line, DDT1MF-2. 2. In fura-2-loaded DDT1MF-2 cells, activation of adenosine A1-receptors (which are linked to PTX-sensitive G-proteins) with a maximal concentration of N6-cyclopentyladenosine (CPA; 300 nM) increased [Ca2+]i from 121 +/- 5 nM to 254 +/- 20 nM (n = 8). These experiments were performed in the presence of extracellular Ca2+. Stimulation of histamine H1-receptors (which are linked to PTX-insensitive G-proteins) with a low concentration of histamine (1 microM) increased [Ca2+]i from 128 +/- 8 nM to 150 +/- 13 nM (n = 8). When combined, CPA (300 nM) and histamine (1 microM) synergistically raised [Ca2+]i from 134 +/- 6 nM to 607 +/- 61 nM (n = 8). 3. Removal of extracellular Ca2+ (experiments performed in Ca(2+)-free buffer containing 0.1 mM EGTA) had no effect on the synergistic interaction between CPA (300 nM) and histamine (1 microM). 4. The addition of maximal concentrations of CPA (300 nM) and histamine (100 microM) resulted in a rise in [Ca2+]i which was additive when compared to the Ca2+ responses obtained with the two agonists alone. Low (30 nM) and subthreshold (3 nM) concentrations of CPA did not alter the Ca2+ response elicited by maximal concentrations of histamine (100 microM). 5. Subthreshold concentrations of CPA (3 nM) and low concentrations of histamine (1 microM) elicited synergistic rises in [Ca2+]i. 6 Synergistic Ca2+ responses were not observed between histamine Hl- and ATP-receptors when cells were simultaneously stimulated with either 1 microM or 10 microM of each agonist.7 These data suggest that adenosine A1-receptors linked to PTX-sensitive G-protein(s) and histamine H14-receptors linked to PTX-insensitive G-proteins interact synergistically to raise [Ca2+]i. In contrast,activation of ATP-receptors which are linked to PTX-insensitive G-protein(s) do not interact synergically with histamine H1-receptors.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham
| | | |
Collapse
|
21
|
Dickenson JM, White TE, Hill SJ. The effects of elevated cyclic AMP levels on histamine-H1-receptor-stimulated inositol phospholipid hydrolysis and calcium mobilization in the smooth-muscle cell line DDT1MF-2. Biochem J 1993; 292 ( Pt 2):409-17. [PMID: 8389134 PMCID: PMC1134224 DOI: 10.1042/bj2920409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of raising cyclic AMP levels, by forskolin stimulation, beta-adrenoceptor activation or cyclic AMP phosphodiesterase inhibition, on inositol phospholipid hydrolysis and increases in intracellular free [Ca2+] ([Ca2+]i) elicited by a range of agonists have been investigated in the hamster vas deferens smooth-muscle cell line DDT1MF-2. Isoprenaline (log [EC50 (M)] = -7.7 +/- 0.2), forskolin and the type IV cyclic AMP phosphodiesterase inhibitor rolipram elicited significant increases in the accumulation of cyclic [3H]AMP. Pretreatment with forskolin (10 microM) attenuated histamine (100 microM)- and N6-cyclopentyladenosine (CPA; 300 nM)-induced release of intracellular Ca2+, observed when cells are stimulated in Ca(2+)-free buffer containing 0.1 mM EGTA. Forskolin had no effect on ATP (100 microM)- or bradykinin (1 microM)-stimulated release of intracellular Ca2+. Histamine-induced intracellular Ca2+ release was also inhibited by pretreatment with rolipram (100 microM) or the membrane-permeant cyclic AMP analogue (Sp)-adenosine 3',5'-monophosphothioate (100 microM). Isoprenaline (1 microM) pretreatment (in the presence of 10 microM rolipram, a concentration which on its own did not decrease the histamine response) attenuated histamine-induced intracellular Ca2+ release. Forskolin inhibited histamine (100 microM)- and CPA (100 nM) stimulated accumulation of [3H]-inositol phosphates, but was without effect on ATP or bradykinin responses. Addition of forskolin (in the presence of 100 microM rolipram) after the cells had been stimulated with histamine (in experiments initiated in Ca(2+)-free buffer) inhibited the rise in [Ca2+]i observed when extracellular Ca2+ (2 mM) was re-applied (owing to receptor-mediated Ca2+ influx). Finally, the refilling of intracellular Ca2+ stores (after receptor-mediated Ca2+ influx is blocked by mepyramine) can be demonstrated in the presence of raised cyclic AMP levels.
Collapse
Affiliation(s)
- J M Dickenson
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | | | |
Collapse
|