1
|
Nettlefold C, Chakraborty P, Al Shaheen A, Denham N, Kakarla J, Burg MR, Hayashi T, Ahmed I, Nanthakumar K. A Primer on the Evolving Subspecialty of Onco-Electrophysiology. Can J Cardiol 2025; 41:181-194. [PMID: 39521053 DOI: 10.1016/j.cjca.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Cardio-oncology has become a well-established subspecialty because of the growing burden of cardiovascular diseases in oncology patients, resulting from the cardiac toxicities of cancer therapies and the coexistence of both conditions in the same population. As with other cardiovascular conditions, cardiac arrhythmias have emerged as an important concern in patients with cancer. However, the management of arrhythmias is more complicated in these patients because of complex interactions between oncotherapeutics and arrhythmia-treatment strategies. Similarly, patients with cardiac implantable electronic devices (CIEDs) require cancer treatment strategies that involve radiation therapy require specific management strategies. Thus, there is a need for a specific mechanistic understanding of electrophysiological abnormalities, arrhythmia, and device management in oncology patients, especially given the expanding range of oncologic therapies and radiation strategies. This increasingly prevalent clinical challenge requires new expertise that expands on a yearly basis. This narrative review deals with this recent expansion and addresses key areas of onco-electrophysiology, including the mechanistic basis of common electrocardiographic changes, diagnosis, and management of arrhythmias attributable to oncotherapeutics and the care of patients with arrhythmias who require oncologic therapies, especially patients with devices and drug interactions leading to arrhythmias as seen by cardiac physicians dealing with oncology patients. In addition, it reviews evolving management strategies and protocols for patients with implantable devices, especially if urgent radiation is needed. This review aims to bridge the recent knowledge growth in arrhythmia care for patients with cancer and highlight the evolution of onco-electrophysiology as a subspeciality.
Collapse
Affiliation(s)
- Chloe Nettlefold
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Praloy Chakraborty
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Abdullah Al Shaheen
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nathan Denham
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jayant Kakarla
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melanie R Burg
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takahiro Hayashi
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Intisar Ahmed
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Dos Santos JM, Joiakim A, Putt DA, Scherrer-Crosbie M, Kim H. 14,15-Dihydroxyeicosatrienoic acid, a soluble epoxide hydrolase metabolite in blood, is a predictor of anthracycline-induced cardiotoxicity - a hypothesis generating study. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:47. [PMID: 38102716 PMCID: PMC10722875 DOI: 10.1186/s40959-023-00198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Early identification of patients susceptible to chemotherapy-induced cardiotoxicity could lead to targeted treatment to reduce cardiac dysfunction. Rats treated with doxorubicin (DOX), a chemotherapeutic agent, have increased cardiac expression of 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), a bioactive lipid implicated in hypertension and coronary artery disease. However, the utility of 14,15-DHET as plasma biomarkers was not defined. The aim of this study is to investigate if levels of 14,15-DHET are an early blood biomarker to predict the subsequent occurrence of cardiotoxicity in cancer patients after chemotherapy. METHODS H9c2 rat cardiomyocytes were treated with DOX (1 μM) for 2 h and levels of 14,15-DHET in cell media was quantified at 2, 6 or 24 h in media after DOX treatment. Similarly, female Sprague-Dawley rats were treated with DOX for two weeks and levels of 14,15-DHET was assessed in plasma at 48 h and 2 weeks after DOX treatment. Changes in brain natriuretic peptide (BNP) mRNA, an early cardiac hypertrophy process, were determined in the H9c2 cells and rat cardiac tissue. Results were confirmed in human subjects by assessment of levels of 14,15-DHET in plasma of breast cancer patients before and after DOX treatment and left ventricular ejection fraction (LVEF), a clinical marker of cardiotoxicity. RESULTS Levels of 14,15-DHET in cell media and rat plasma increased ~ 3-fold and was accompanied with increase in BNP mRNA in H9c2 cells and rat cardiac tissue after DOX treatment. In matched plasma samples from breast cancer patients, levels of 14,15-DHET were increased in patients that developed cardiotoxicity at 3 months before occurrence of LVEF decrease. CONCLUSIONS Together, these results indicate that levels of 14,15-DHET are elevated prior to major changes in cardiac structure and function after exposure to anthracyclines. Increased levels of 14,15-DHET in plasma may be an important clinical biomarker for early detection of anthracycline-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - Marielle Scherrer-Crosbie
- Cardiac Ultrasound Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA.
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Kinoshita T, Onda N, Ohno R, Ikeda T, Sugizaki Y, Ohara H, Nakagami T, Yuzawa H, Shimada H, Shimizu K, Ikeda T. Activation recovery interval as an electrocardiographic repolarization index to detect doxorubicin-induced cardiotoxicity. J Cardiol 2023; 82:473-480. [PMID: 37506822 DOI: 10.1016/j.jjcc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND It has been reported that early detection and treatment of cancer therapy- related cardiac dysfunction (CTRCD) improves its prognosis. The detailed relationships between electrocardiographic repolarization indices and decreased left ventricular function in CTRCD have not been elucidated. We closely assessed such relationships in patients with doxorubicin (DOX)-induced CTRCD. METHODS This retrospective, single-center, cohort study included 471 consecutive patients with malignant lymphoma who received chemotherapy including DOX. Of them, 17 patients with CTRCD and 68 patients without CTRCD who underwent 12‑lead electrocardiogram and an echocardiogram before and after chemotherapy were eventually analyzed. The fluctuations of the following electrocardiographic repolarization indices were evaluated in lead V5: QT, JT, T peak to T end interval (Tp-e), and activation recovery interval (ARI). These indices were corrected by heart rate with the Fridericia formula. RESULTS The median period from the end of chemotherapy to the diagnosis of the CTRCD group was 346 days (IQR 170-1283 days). After chemotherapy, the QT interval was significantly prolonged in both with and without CTRCD groups compared with that before chemotherapy (pre QTc vs. post QTc in CTRCD group, 386 ± 27 ms vs. 411 ± 37 ms, p = 0.03, pre QTc vs. post QTc in non-CTRCD group, 388 ± 24 ms vs. 395 ± 25 ms, p = 0.04, respectively). ARIc after chemotherapy was characteristically observed only in the CTRCD group (pre ARIc vs. post ARIc in CTRCD group, 258 ± 53 ms vs. 211 ± 28 ms, p = 0.03, pre ARIc vs. post ARIc in non-CTRCD group, 221 ± 19 ms vs. 225 ± 23 ms, NS, respectively) and had negative correlations with left ventricular ejection fraction (r = -0.56, p < 0.001). Using the receiver-operating characteristic curve, the relationship between ARIc and CTRCD morbidity was examined. The optimal cut-off point of ARIc prolongation between before and after chemotherapy was 18 ms (sensitivity 75 %, specificity 79 %, area under the curve 0.76). CONCLUSIONS ARIc prolongation may be useful in the early detection of developing late-onset chronic DOX-induced CTRCD and lead to early treatment for cardiac protection.
Collapse
Affiliation(s)
- Toshio Kinoshita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan.
| | - Naoki Onda
- Division of Hematology and Oncology, Department of Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Ruiko Ohno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Takushi Ikeda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Yuta Sugizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Hiroshi Ohara
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Nakagami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Hitomi Yuzawa
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Shimizu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Agarwal MA, Sridharan A, Pimentel RC, Markowitz SM, Rosenfeld LE, Fradley MG, Yang EH. Ventricular Arrhythmia in Cancer Patients: Mechanisms, Treatment Strategies and Future Avenues. Arrhythm Electrophysiol Rev 2023; 12:e16. [PMID: 37457438 PMCID: PMC10345968 DOI: 10.15420/aer.2023.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cardiovascular disease and cancer are the leading causes of morbidity and mortality in the US. Despite the significant progress made in cancer treatment leading to improved prognosis and survival, ventricular arrhythmias (VA) remain a known cardiovascular complication either exacerbated or induced by the direct and indirect effects of both traditional and novel cancer treatments. Although interruption of cancer treatment because of VA is rarely required, knowledge surrounding this issue is essential for optimising the overall care of patients with cancer. The mechanisms of cancer-therapeutic-induced VA are poorly understood. This review will discuss the ventricular conduction (QRS) and repolarisation abnormalities (QTc prolongation), and VAs associated with cancer therapies, as well as existing strategies for the identification, prevention and management of cancer-treatment-induced VAs.
Collapse
Affiliation(s)
- Manyoo A Agarwal
- Heart, Vascular and Thoracic Institute, Cardio-Oncology Program, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aadhavi Sridharan
- Section of Electrophysiology, Division of Cardiology, Department of Medicine, Banner Health, University of Arizona – Tucson, Tucson, AZ, US
| | - Rhea C Pimentel
- Department of Cardiovascular Medicine, University of Kansas Health System, Kansas City, KS, US
| | - Steven M Markowitz
- Division of Cardiovascular Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, US
| | - Lynda E Rosenfeld
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, US
| | - Michael G Fradley
- Thalheimer Center for Cardio-Oncology, Division of Cardiology, Department of Medicine, University of Pennsylvania, PA, US
| | - Eric H Yang
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, US
| |
Collapse
|
5
|
Application of Optical Methods for Determination of Concentration of Doxorubicin in Blood and Plasma. Pharmaceuticals (Basel) 2022; 15:ph15020112. [PMID: 35215225 PMCID: PMC8880482 DOI: 10.3390/ph15020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of presented research is to develop a simple and quick method of spectrophotometric detection for the determination of doxorubicin hydrochloride in blood and plasma. Anthracycline antibiotics are among the most effective antineoplastic agents. However, despite their high efficacy in the treatment of various types of cancer, their administration is limited primarily because they exhibit myocardial toxicity. This may be a limiting factor in the dosage of medications; nevertheless, drugs exhibiting this mechanism of action constitute a very important group of chemotherapeutics. One of the more widely studied antibiotics from the anthracycline group is doxorubicin. It exhibits the highest antineoplastic activity from among a number of derivative compounds. Because of the adverse effects of doxorubicin, especially cardiotoxicity, it is important to maintain control of its concentration in body fluids. The method in the study consists of extraction doxorubicin from the plasma or blood and measurements of the absorbance of light in the visible light range in a DOX solution with respect to a reference sample. The research used blood and plasma samples spiked with doxorubicin to give concentrations in the range of 0.2–10 µg/mL. Obtained LODs were 1.6 µg/mL and 1.2 µg/mL, respectively.
Collapse
|
6
|
Kaplan O, Bozdag Kaplan N. Evaluation of dexrazoxane effect on preventing acute cardiac arrhythmia in patients with breast cancer treated with neoadjuvant/adjuvant anthracycline-based chemotherapy. Int J Clin Pract 2021; 75:e14705. [PMID: 34363726 DOI: 10.1111/ijcp.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Adding dexrazoxane to the treatment during neoadjuvant/adjuvant anthracycline-based chemotherapy in patients with breast cancer prevents the development of heart failure. In this study, we investigated whether dexrazoxane has a protective effect on arrhythmia resulting from chemotherapy. METHODS Patients with breast cancer who received neoadjuvant/adjuvant anthracycline-based chemotherapy in the medical oncology polyclinic between 2017 and 2020 were included in the study. To investigate the effect of dexrazoxane on arrhythmia, this retrospective study included 70 patients, whose 12-lead surface electrocardiograms (ECGs) and echocardiography were obtained before receiving anthracycline-based treatment and after receiving four cycles of chemotherapy. Thirty-two patients received anthracycline only, and 38 patients received anthracycline and dexrazoxane. Arrhythmia parameters such as QT interval, QTc interval, Tp-e interval, Tp-e/QT, Tp-e/QTc and frontal QRS-T angle were calculated from 12-lead ECGs. RESULTS Arrhythmia parameters such as frontal QRS-T angle , QT , QTc and heart rate were significantly increased after chemotherapy in both the groups that received dexrazoxane and did not receive dexrazoxane (P < .05). Contrary to the ECG parameters, ejection fraction was decreased in the dexrazoxane group (60.5 ± 2.2 vs 60.1 ± 2.0; P = .038) and the other group (60.4 ± 1.3 vs 60.0 ± 2.6; P = .043) after the chemotherapy. CONCLUSION This study demonstrated that dexrazoxane may not have a protective effect on ECG parameters which are predictors of arrhythmia, at breast cancer patients who received anthracyclines.
Collapse
Affiliation(s)
- Ozgur Kaplan
- Department of Cardiology, Şişli Memorial Hospital, İstanbul, Turkey
| | - Nihal Bozdag Kaplan
- Department of Medical Oncology, Ministry of Health Istanbul Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
7
|
Altomare C, Lodrini AM, Milano G, Biemmi V, Lazzarini E, Bolis S, Pernigoni N, Torre E, Arici M, Ferrandi M, Barile L, Rocchetti M, Vassalli G. Structural and Electrophysiological Changes in a Model of Cardiotoxicity Induced by Anthracycline Combined With Trastuzumab. Front Physiol 2021; 12:658790. [PMID: 33897465 PMCID: PMC8058443 DOI: 10.3389/fphys.2021.658790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background Combined treatment with anthracyclines (e.g., doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2) antibody, in patients with HER2-positive cancer is limited by cardiotoxicity, as manifested by contractile dysfunction and arrhythmia. The respective roles of the two agents in the cardiotoxicity of the combined therapy are incompletely understood. Objective To assess cardiac performance, T-tubule organization, electrophysiological changes and intracellular Ca2+ handling in cardiac myocytes (CMs) using an in vivo rat model of Dox/Trz-related cardiotoxicity. Methods and Results Adult rats received 6 doses of either Dox or Trz, or the two agents sequentially. Dox-mediated left ventricular (LV) dysfunction was aggravated by Trz administration. Dox treatment, but not Trz, induced T-tubule disarray. Moreover, Dox, but not Trz monotherapy, induced prolonged action potential duration (APD), increased incidence of delayed afterdepolarizations (DADs) and beat-to-beat variability of repolarization (BVR), and slower Ca2+ transient decay. Although APD, DADs, BVR and Ca2+ transient decay recovered over time after the cessation of Dox treatment, subsequent Trz administration exacerbated these abnormalities. Trz, but not Dox, reduced Ca2+ transient amplitude and SR Ca2+ content, although only Dox treatment was associated with SERCA downregulation. Finally, Dox treatment increased Ca2+ spark frequency, resting Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and long-lasting Ca2+ release events (so-called Ca2+ “embers”), partially reproduced by Trz treatment. Conclusion These results suggest that in vivo Dox but not Trz administration causes T-tubule disarray and pronounced changes in electrical activity of CMs. While adaptive changes may account for normal AP shape and reduced DADs late after Dox administration, subsequent Trz administration interferes with such adaptive changes. Intracellular Ca2+ handling was differently affected by Dox and Trz treatment, leading to SR instability in both cases. These findings illustrate the specific roles of Dox and Trz, and their interactions in cardiotoxicity and arrhythmogenicity.
Collapse
Affiliation(s)
- Claudia Altomare
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Giuseppina Milano
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Laboratory of Cardiovascular Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Vanessa Biemmi
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Nicolò Pernigoni
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Mara Ferrandi
- Windtree Therapeutics Inc., Warrington, PA, United States
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Early electrocardiographic indices for predicting chronic doxorubicin-induced cardiotoxicity. J Cardiol 2020; 77:388-394. [PMID: 33214049 DOI: 10.1016/j.jjcc.2020.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dealing with chemotherapy-related cardiac dysfunction (CTRCD) remains a significant problem complicated by the difficulty in early detection of cardiotoxicity. Electrocardiogram (ECG) is expected to be the most realistic methodology due to lower cost-performance and non-invasiveness. We investigated the long-term visual fluctuations in the ECG waveforms in patients with chronic doxorubicin (DOX)-induced cardiotoxicity to identify ECG indices for the early detection of cardiotoxicity. METHODS We conducted a retrospective case series study by reviewing the medical records of 470 consecutive patients with malignant lymphoma who were treated with DOX at our institute between January 2010 and December 2017. Of them, 23 (4.9%) patients developed left ventricular dysfunction and were diagnosed with CTRCD using echocardiography. We assessed the ECG indices on 12-lead ECG recordings before and after treatment in 15 patients; eight patients were excluded due to conduction disturbances or atrial fibrillation. RESULTS CTRCD was detected at a median of 475 (interquartile range, IQR: 341-1333) days after initiating chemotherapy. The evaluation of ECG indices preceding CTRCD development was performed 93 (IQR: 52-232) days before the detection of CTRCD. In the stage of CTRCD, the most significant ECG change was T-wave flattening in leads V3-V6 (12 patients, 80%). Additionally, QTa prolongation was observed in leads I and aVL (n = 10, 66%), leads II, III, and aVF (n = 9, 60%), and leads V3-V6 (n = 10, 73%). These ECG changes were not observed before the treatment but were detected mildly in the pre-CTRCD stage, which subsequently worsened in the CTRCD stage. CONCLUSIONS This study indicated that T-wave changes and QTa prolongation may be useful as an early indicator before the onset of CTRCD in patients with DOX-induced cardiotoxicity.
Collapse
|
9
|
Hospitalized cancer patients with acquired long QT syndrome-a matched case-control study. CARDIO-ONCOLOGY 2020; 6:3. [PMID: 32154029 PMCID: PMC7048064 DOI: 10.1186/s40959-020-0057-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
Background Our recent study has revealed that many hospitalized patients with acquired long QT syndrome (ALQTS) are cancer patients. This study aims to determine the risk factors and outcomes of hospitalized cancer patients with ALQTS. Methods We performed a matched case-control study within a cohort of 10,180 cancer patients hospitalized between September 2013 and April 2016. Among them, 150 patients defined as having severe ALQTS with a markedly prolonged QT interval (QTc ≥ 500 ms) were compared with 293 age-, sex- and cancer-type-matched controls (non-ALQTS). Death as the endpoint was followed for up to 2 years. Cox regression and Kaplan-Meier survival analyses were performed to assess the effects of particular clinical variables on all-cause mortality. Multivariate logistic regression was performed to calculate odds ratios (OR) for various predictors of QT prolongation. Results The mortality was significantly higher in ALQTS group (63.3% vs. 33.4%). Hypertension, hypokalemia, hypocalcemia, QT-prolonging drugs, infection, anemia, anti-microtubule agents were contributing factors to ALQTS. Renal insufficiency, male gender and hypokalemia were found to be independent risk factors for all-cause mortality in ALQTS group. Conclusion Markedly prolonged QT interval was seen in 1.5% of hospitalized cancer patients. The all-cause mortality was high in cancer patients with severe ALQTS.
Collapse
|
10
|
Mohammed HS, Hosny EN, Khadrawy YA, Magdy M, Attia YS, Sayed OA, AbdElaal M. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165665. [PMID: 31918005 DOI: 10.1016/j.bbadis.2020.165665] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eman N Hosny
- Medical Physiology Department, National Research Centre, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Merna Magdy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasmen S Attia
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Omnia A Sayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud AbdElaal
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol Res 2019; 151:104542. [PMID: 31730804 DOI: 10.1016/j.phrs.2019.104542] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
The cancer burden on health and socioeconomics remains exceedingly high, with more than ten million new cases reported worldwide in 2018. The financial cost of managing cancer patients has great economic impact on both an individual and societal levels. Currently, many chemotherapeutic agents are available to treat various malignancies. One of these agents is doxorubicin, which was isolated from Streptomyces peucetius in the 1960s. Doxorubicin is frequently administered in combination with other agents as a mainstay chemotherapeutic regimen in many settings, since there is well-documented evidence that it is effective in eliminating malignant cells. Doxorubicin exerts its anti-tumor properties through DNA intercalation and topoisomerase inhibition. It also contains a quinone moiety which is susceptible to redox reactions with certain intracellular molecules, thereby leading to the production of reactive oxygen species. The oxidative stress following doxorubicin exposure is responsible for its well-documented cardiotoxicity, impairing cardiac contractility, ultimately resulting in congestive heart failure. Despite the cumulative evidence noting its adverse effects on the heart, limited information is available regarding the mechanistic association between doxorubicin and cardiac arrhythmias. There is compelling evidence to suggest that doxorubicin also causes proarrhythmic effects. Several case reports and studies in cancer patients have attributed many arrhythmic events to doxorubicin, some of which are life-threatening such as complete heart block and ventricular fibrillation. In this review, reports regarding the potential arrhythmic complications associated with doxorubicin from previous studies investigating the effects of doxorubicin on cardiac electrophysiological properties are comprehensively summarized and discussed. Consistencies and controversial findings from in vitro, in vivo, ex vivo, and clinical studies are presented and mechanistic insights regarding the effects of doxorubicin are also discussed.
Collapse
|
12
|
Zhao YQ, Zhang L, Zhao GX, Chen Y, Sun KL, Wang B. Fucoxanthin attenuates doxorubicin-induced cardiotoxicity via anti-oxidant and anti-apoptotic mechanisms associated with p38, JNK and p53 pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Strigli A, Raab C, Hessler S, Huth T, Schuldt AJT, Alzheimer C, Friedrich T, Burridge PW, Luedde M, Schwake M. Doxorubicin induces caspase-mediated proteolysis of KV7.1. Commun Biol 2018; 1:155. [PMID: 30302399 PMCID: PMC6162258 DOI: 10.1038/s42003-018-0162-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Kv7.1 (KCNQ1) coassembles with KCNE1 to generate the cardiac IKs-channel. Gain- and loss-of-function mutations in KCNQ1 are associated with cardiac arrhthymias, highlighting the importance of modulating IKs activity for cardiac function. Here, we report proteolysis of Kv7.1 as an irreversible posttranslational modification. The identification of two C-terminal fragments of Kv7.1 led us to identify an aspartate critical for the generation of one of the fragments and caspases as responsible for mediating proteolysis. Activating caspases reduces Kv7.1/KCNE1 currents, which is abrogated in cells expressing caspase-resistant channels. Enhanced cleavage of Kv7.1 can be detected for the LQT mutation G460S, which is located adjacent to the cleavage site, whereas a calmodulin-binding-deficient mutation impairs cleavage. Application of apoptotic stimuli or doxorubicin-induced cardiotoxicity provokes caspase-mediated cleavage of endogenous IKs in human cardiomyocytes. In summary, caspases are novel regulatory components of IKs channels that may have important implications for the molecular mechanism of doxorubicin-induced cardiotoxicity. Anne Strigli et al. report that the voltage-gated potassium channel Kv7.1 undergoes caspase-mediated proteolytic cleavage, which reduces its cardiac activity. Their findings implicate caspases as regulators of the IKs channel complex, which may have implications for understanding drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Anne Strigli
- Institute of Biochemistry, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Christian Raab
- Institute of Biochemistry, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Sabine Hessler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Tobias Huth
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Adam J T Schuldt
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Searle Building 8-450, Chicago, IL, 60611, USA
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Thomas Friedrich
- Institut für Chemie PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Searle Building 8-450, Chicago, IL, 60611, USA
| | - Mark Luedde
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Michael Schwake
- Institute of Biochemistry, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany. .,Faculty of Chemistry/Biochemistry III, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany. .,Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-4296, USA.
| |
Collapse
|
14
|
Fuzi and Banxia Combination, Eighteen Antagonisms in Chinese Medicine, Aggravates Adriamycin-Induced Cardiomyopathy Associated with PKA/ β2AR-Gs Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2875873. [PMID: 30258466 PMCID: PMC6146551 DOI: 10.1155/2018/2875873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023]
Abstract
Aconite Lateralis Radix Praeparata (Fuzi) and Pinelliae Rhizoma (Banxia) are a combination often used to treat cardiovascular diseases in ancient and modern clinical practice. However, eighteen antagonisms based on traditional Chinese medicine (TCM) theory often abided against such combination therapy. Therefore, exploring whether coadministration of the two herbs can be used in adriamycin- (ADR-) induced cardiomyopathy and clarifying the potential mechanism could help to guide its clinical application. Echocardiography experiments revealed that either Fuzi, Banxia, or their combination had effect on ADR-induced heart dysfunction, while high dose Fuzi exerted positive inotropic effect associated with restored PKA levels. Moreover, low dose Fuzi significantly reduced QT/QTc prolongation, inhibited cardiac apoptosis, and upregulated protein expression of PKA. However, combination of Fuzi and Banxia greatly aggravated QT/QTc prolongation and cardiomyocyte apoptosis in ADR rats compared with each drug alone, which was accompanied by a marked decrease in PKA, pSer346 levels. Similarly, Banxia alone treatment promoted cardiac apoptosis and downregulated protein levels of PKA and pSer346. Additionally, high dose Fuzi treatment also produced proapoptotic effect. Taken together, our study has provided the first direct evidence that combination of Fuzi, a positive inotropic agent, with Banxia promoted cardiac apoptosis in an ADR induced rat model of cardiomyopathy, which may be associated with suppression of PKA/β2AR-Gs signaling. This study also provides scientific language for better understanding of the risks and limitations of combination of Fuzi and Banxia in clinical applications.
Collapse
|
15
|
Choi SW, Choi SW, Jeon YK, Moon SH, Zhang YH, Kim SJ. Suppression of hERG K + current and cardiac action potential prolongation by 4-hydroxynonenal via dual mechanisms. Redox Biol 2018; 19:190-199. [PMID: 30172983 PMCID: PMC6122396 DOI: 10.1016/j.redox.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress under pathological conditions, such as ischemia/reperfusion and inflammation, results in the production of various reactive chemicals. Of these chemicals, 4-hydroxynonenal (4-HNE), a peroxidation product of ω6-polyunsaturated fatty acid, has garnered significant attention. However, the effect of 4-HNE on cardiac electrophysiology has not yet been reported. In the present study, we investigated the effects of 4-HNE on several cardiac ion channels, including human ether-a-go-go-related (hERG) channels, using the whole-cell patch clamp technique. Short-term exposure to 100 μM 4-HNE (4-HNE100S), which mimics local levels under oxidative stress, decreased the amplitudes of rapidly activating delayed rectifier K+ current (IKr) in guinea pig ventricular myocytes (GPVMs) and HEK293T cells overexpressing hERG (IhERG). MS analysis revealed the formation of 4-HNE-hERG adduct on specific amino acid residues, including C276, K595, H70, and H687. Long-term treatment (1–3 h) with 10 μM 4-HNE (4-HNE10L), suppressed IKr and IhERG, but not IKs and ICa,L. Action potential duration (APD) of GPVMs was prolonged by 37% and 64% by 4-HNE100S and 4-HNE10L, respectively. Western blot analysis using surface biotinylation revealed a reduction in mature membrane hERG protein after treatment with 4-HNE10L. Proteasomal degradation inhibitors, such as bortezomib, prevented the 4-HNE10L-induced decrease in mature hERG, suggesting a retrograde degradation of membrane hERG due to 4-HNE. Taken together, 4-HNE100S and 4-HNE10L suppressed IhERG via functional inhibition and downregulation of membrane expression of hERG, respectively. The exposure of 4-HNE under pathological oxidative stress may increase the risk of proarrhythmic events via APD prolongation. 4-HNE-mediated hERG channel modification causes cardiac action potential prolongation. 4-HNE inhibits hERG channel by post-translational modification at Cys276, Lys595, His70, and His687. Long-term exposure to 4-HNE decreases membrane hERG channel expression.
Collapse
Affiliation(s)
- Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yin-Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Qiu B, Wang Y, Li C, Guo H, Xu Y. Utility of the JT Peak Interval and the JT Area in Determining the Proarrhythmic Potential of QT-Shortening Agents. J Cardiovasc Pharmacol Ther 2018; 24:160-171. [PMID: 30092655 DOI: 10.1177/1074248418791999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-induced long QT increases the risk of ventricular tachyarrhythmia known as torsades de pointes (TdP). Many biomarkers have been used to predict TdP. At present, however, there are few biomarkers for arrhythmias induced by QT-shortening drugs. The objective of the present study was to identify the best biomarkers for predicting arrhythmias caused by the 4 potassium channel openers ICA-105574, NS-1643, R-L3, and pinacidil. Our results showed that, at higher concentrations, all 4 potassium channel openers induced ventricular tachycardia (VT) and ventricular fibrillation (VF) in Langendorff-perfused guinea pig hearts, but not in rabbit hearts. The electrocardiography parameters were measured including QT/QTc, JT peak, Tp-e interval, JT area, short-term beat-to-beat QT interval variability (STV), and index of cardiac electrophysiological balance (iCEB). We found that the potassium channel openers at test concentrations shortened the QT/QTc and the JT peak interval and increased the JT area. Nevertheless, even at proarrhythmic concentrations, they did not always change STV, Tp-e, or iCEB. Receiver operating characteristic curve analysis showed that the JT peak interval representing the early repolarization phase and the JT area reflecting the dispersion of ventricular repolarization were the best predictors of VT/VF. Action potential recordings in guinea pig papillary muscle revealed that except for pinacidil, the potassium channel openers shortened APD30 in a concentration-dependent manner. They also evoked early or delayed afterdepolarizations at fast pacing rates. Patch-clamp recordings in guinea pig ventricular cardiomyocytes showed that the potassium channel openers enhanced the total outward currents during the early phase of action potential repolarization, especially at proarrhythmic concentrations. We concluded that the JT peak interval and the JT area are surrogate biomarkers identifying the risk of proarrhythmia associated with the administration of QT-shortening agents. The acceleration of early-phase repolarization and the increased dispersion of ventricular repolarization may contribute to the occurrence of arrhythmias.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei, China.,Hebei General Hospital, Shijiazhuang, China
| | - Yuhong Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Congxin Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Batista L, Bastogne T, Delaunois A, Valentin JP, Atienzar F. A novel statistical signal processing method to estimate effects of compounds on contractility of cardiomyocytes using impedance assays. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
de Oliveira Silva J, Miranda SEM, Leite EA, de Paula Sabino A, Borges KBG, Cardoso VN, Cassali GD, Guimarães AG, Oliveira MC, de Barros ALB. Toxicological study of a new doxorubicin-loaded pH-sensitive liposome: A preclinical approach. Toxicol Appl Pharmacol 2018; 352:162-169. [DOI: 10.1016/j.taap.2018.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
19
|
Alexandre J, Moslehi JJ, Bersell KR, Funck-Brentano C, Roden DM, Salem JE. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol Ther 2018; 189:89-103. [PMID: 29698683 DOI: 10.1016/j.pharmthera.2018.04.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant advances in cancer treatment have resulted in decreased cancer related mortality for many malignancies with some cancer types now considered chronic diseases. Despite these improvements, there is increasing recognition that many cancer patients or cancer survivors can develop cardiovascular diseases, either due to the cancer itself or as a result of anticancer therapy. Much attention has focused on heart failure; however, other cardiotoxicities, notably cardiac rhythm disorders, can occur without underlying cardiomyopathy. Supraventricular tachycardias occur in cancer patients treated with cytotoxic chemotherapy (anthracyclines, gemcitabine, cisplatin and alkylating-agents) or kinase-inhibitors (KIs) such as ibrutinib. Ventricular arrhythmias, with a subset of them being torsades-de-pointes (TdP) favored by QTc prolongation have been reported: this may be the result of direct hERG-channel inhibition or a more recently-described mechanism of phosphoinositide-3-kinase inhibition. The major anticancer drugs responsible for QTc prolongation in this context are KIs, arsenic trioxide, anthracyclines, histone deacetylase inhibitors, and selective estrogen receptor modulators. Anticancer drug-induced cardiac rhythm disorders remain an underappreciated complication even by experienced clinicians. Moreover, the causal relationship of a particular anticancer drug with cardiac arrhythmia occurrence remains challenging due in part to patient comorbidities and complex treatment regimens. For example, any cancer patient may also be diagnosed with common diseases such as hypertension, diabetes or heart failure which increase an individual's arrhythmia susceptibility. Further, anticancer drugs are generally usually used in combination, increasing the challenge around establishing causation. Thus, arrhythmias appear to be an underappreciated adverse effect of anticancer agents and the incidence, significance and underlying mechanisms are now being investigated.
Collapse
Affiliation(s)
- Joachim Alexandre
- CHU Caen, PICARO Cardio-oncology Program, Department of Pharmacology, F-14033 Caen, France; Normandie Univ, UNICAEN, CHU Caen, EA 4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, 14000 Caen, France
| | - Javid J Moslehi
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA
| | - Kevin R Bersell
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France
| | - Dan M Roden
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joe-Elie Salem
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France.
| |
Collapse
|
20
|
Fernandez-Chas M, Curtis MJ, Niederer SA. Mechanism of doxorubicin cardiotoxicity evaluated by integrating multiple molecular effects into a biophysical model. Br J Pharmacol 2018; 175:763-781. [PMID: 29161764 DOI: 10.1111/bph.14104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin (DOX) is an effective cancer therapeutic agent but causes therapy-limiting cardiotoxicity. The effects of DOX and its metabolite doxorubicinol (DOXL) on individual channels have been well characterized in isolation. However, it is unknown how the action and interaction of affected channels combine to generate the phenotypic cardiotoxic outcome. We sought to develop an in silico model that links drug effects on channels to action potential duration (APD) and intracellular Ca2+ concentration in order to address this gap in knowledge. EXPERIMENTAL APPROACH We first propose two methods to obtain, from published values, consensus drug effects on the currents of individual channels, transporters and pumps. Separately, we obtained equivalent values for APD and Ca2+ concentration (the readouts used as surrogates for cardiotoxicity). Once derived, the consensus effects on the currents were incorporated into established biophysical models of the cardiac myocyte and were refined adjusting the sarcoplasmic reticulum Ca2+ leak current (ILeak ) until the consensus effects on APD and Ca2+ dynamics were replicated. Using factorial analysis, we then quantified the relative contribution of each channel to DOX and DOXL cardiotoxicity. KEY RESULTS The factorial analysis identified the rapid delayed rectifying K+ current, the L-type Ca2+ current and the sarcoplasmic reticulum ILeak as the targets primarily responsible for the cardiotoxic effects on APD and Ca2+ dynamics. CONCLUSIONS AND IMPLICATIONS This study provides insight into the mechanisms of DOX-induced cardiotoxicity and a framework for the development of future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- M Fernandez-Chas
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| | - M J Curtis
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| | - S A Niederer
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| |
Collapse
|
21
|
Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, Calap-Quintana P, Moltó MD, Paricio N. Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models. Free Radic Biol Med 2017; 108:683-691. [PMID: 28455141 DOI: 10.1016/j.freeradbiomed.2017.04.364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Pablo Calap-Quintana
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
| | - María Dolores Moltó
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; CIBERSAM, INCLIVA. Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
22
|
Gentile S. hERG1 potassium channel in cancer cells: a tool to reprogram immortality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:649-655. [PMID: 27649700 DOI: 10.1007/s00249-016-1169-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.
Collapse
|
23
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats. Adv Pharm Bull 2016; 6:423-433. [PMID: 27766227 PMCID: PMC5071806 DOI: 10.15171/apb.2016.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| |
Collapse
|
24
|
Clements M, Millar V, Williams AS, Kalinka S. Bridging Functional and Structural Cardiotoxicity Assays Using Human Embryonic Stem Cell-Derived Cardiomyocytes for a More Comprehensive Risk Assessment. Toxicol Sci 2015; 148:241-60. [DOI: 10.1093/toxsci/kfv180] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
25
|
Zhu H, Luo P, Fu Y, Wang J, Dai J, Shao J, Yang X, Chang L, Weng Q, Yang B, He Q. Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin. Oncotarget 2015; 6:3254-67. [PMID: 25226612 PMCID: PMC4413651 DOI: 10.18632/oncotarget.2410] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023] Open
Abstract
Adriamycin, a widely used anthracycline antibiotic in multiple chemotherapy regimens, has been challenged by the cardiotoxicity leading to fatal congestive heart failure in the worst condition. The present study demonstrated that Dihydromyricetin, a natural product extracted from ampelopsis grossedentat, exerted cardioprotective effect against the injury in Adriamycin-administrated ICR mice. Dihydromyricetin decreased ALT, LDH and CKMB levels in mice serum, causing a significant reduction in the toxic death triggered by Adriamycin. The protective effects were also indicated by the alleviation of abnormal electrocardiographic changes, the abrogation of proliferation arrest and apoptotic cell death in primary myocardial cells. Further study revealed that Dihydromyricetin-rescued loss of anti-apoptosis protein ARC provoked by Adriamycin was involved in the cardioprotection. Intriguingly, the anticancer activity of Adriamycin was not compromised upon the combination with Dihydromyricetin, as demonstrated by the enhanced anticancer effect achieved by Adriamycin plus Dihydromyricetin in human leukemia U937 cells and xenograft models, in a p53-dependent manner. These results collectively promised the potential value of Dihydromyricetin as a rational cardioprotective agent of Adriamycin, by protecting myocardial cells from apoptosis, while potentiating anticancer activities of Adriamycin, thus further increasing the therapeutic window of the latter one.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cytoprotection
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Doxorubicin/toxicity
- Flavonols/pharmacology
- HL-60 Cells
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Heart Diseases/prevention & control
- Humans
- K562 Cells
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/metabolism
- Oxidative Stress/drug effects
- Protective Agents/pharmacology
- Proto-Oncogene Proteins c-mdm2/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Suppressor Protein p53/metabolism
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Fu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiabin Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linlin Chang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Retroinverso analogs of spadin display increased antidepressant effects. Psychopharmacology (Berl) 2015; 232:561-74. [PMID: 25080852 PMCID: PMC4302242 DOI: 10.1007/s00213-014-3683-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023]
Abstract
RATIONALE Although depression is the most common mood disorder, only one third of patients are treated with success. Finding new targets, new drugs, and also new drug intake way are the main challenges in the depression field. Several years ago, we identified a new target with the TWIK-related potassium channel-1 (TREK-1) potassium channel, and more recently, we have discovered a peptide of 17 amino acids with antidepressant properties. This peptide, that we called spadin, can be considered as a new concept in antidepressant drug design. Spadin derives from a larger peptide resulting to a posttranslational maturation of sortilin; consequently, spadin can be considered as a natural molecule. Moreover, spadin acts more rapidly than classical antidepressants and does not induce side effects. OBJECTIVES In this work, we sought analogs of spadin displaying a better affinity on TREK-1 channels and an increased action duration. METHODS Analogs were characterized by electrophysiology measurements, by behavioral tests, and by their ability to induce neurogenesis. RESULTS We identified two retro-inverso peptides that have kept the antidepressant properties of spadin; particularly, they increased the hippocampal neurogenesis after a 4-day treatment. As spadin, these analogs did not induce side effects on either pain, epilepsy processes, or at the cardiac level. CONCLUSIONS Together, our results indicated that spadin retro-inverso peptides could represent new potent antidepressant drugs. As exemplified by spadin in the field of depression, retro-inverso strategies could represent a useful technique for developing new classes of drugs in a number of pathologies.
Collapse
|
27
|
Holzgrefe H, Ferber G, Champeroux P, Gill M, Honda M, Greiter-Wilke A, Baird T, Meyer O, Saulnier M. Preclinical QT safety assessment: Cross-species comparisons and human translation from an industry consortium. J Pharmacol Toxicol Methods 2014; 69:61-101. [DOI: 10.1016/j.vascn.2013.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/10/2023]
|
28
|
Guo L, Coyle L, Abrams RMC, Kemper R, Chiao ET, Kolaja KL. Refining the Human iPSC-Cardiomyocyte Arrhythmic Risk Assessment Model. Toxicol Sci 2013; 136:581-94. [DOI: 10.1093/toxsci/kft205] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
29
|
Clarhaut J, Fraineau S, Guilhot J, Peraudeau E, Tranoy-Opalinski I, Thomas M, Renoux B, Randriamalala E, Bois P, Chatelier A, Monvoisin A, Cronier L, Papot S, Guilhot F. A galactosidase-responsive doxorubicin-folate conjugate for selective targeting of acute myelogenous leukemia blasts. Leuk Res 2013; 37:948-55. [PMID: 23726264 DOI: 10.1016/j.leukres.2013.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 11/26/2022]
Abstract
Cytarabine combined with an anthracycline or an anthracenedione represents the usual intensive induction therapy for the treatment of AML. However, this protocol induces severe side effects and treatment-related mortality due to the lack of selectivity of these cytotoxic agents. In this paper, we present the study of the first galactosidase-responsive molecular "Trojan Horse" programmed for the delivery of doxorubicin exclusively inside AML blasts over-expressing the folate receptor (FR). This targeting system allows the selective killing of AML blasts without affecting normal endothelial, cardiac or hematologic cells from healthy donors suggesting that FDC could reduce adverse events usually recorded with anthracyclines.
Collapse
|
30
|
Alexandre J, Schiariti M, Rouet R, Puddu PE. Rabbit ventricular myocardium undergoing simulated ischemia and reperfusion in a double compartment tissue bath: a model to investigate both antiarrhythmic and arrhythmogenic likelihood. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2013; 5:52-60. [PMID: 23525863 PMCID: PMC3601462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/16/2013] [Indexed: 06/02/2023]
Abstract
An ischemia/reperfusion-simulating model in rabbit tissue should be right oriented and clinically relevant to provide a non expensive approach for manipulations of currents involved in the repolarization process. Standard right ventricular guinea-pig (N=18) and newly investigated rabbit (N=12) myocardial strips were placed in a special perfusion chamber allowing partition into two segments independently superfused with oxygenated Tyrode's solution or a modified Tyrode's solution mimicking ischemia by: 1) increased extracellular potassium concentration (12 mmol/L), 2) decreased HCO3 (-) concentration (9 mmol/L), leading to a decrease in pH (6.90 ± 0.05), 3) decreased pO2 by replacement of 95% O2 and 5% CO2 by 95% N2 and 5% CO2 gas mixture, and 4) complete withdrawal of glucose. There were significant differences in rabbit as compared to guinea-pig preparations in baseline (p<0.02) and post-ischemic-like (p<0.01) APA and RMP with lower values in the formers, and lower post-ischemic Vmax in rabbit preparations (25±15 versus 97±83 V/s, p<0.01) but neither baseline nor post-ischemic-like or absolute changes in APD50, APD90 were different. In ischemia- and reperfusion-like phases, there were high proportions of single spontaneous repetitive responses, both in guinea-pig (respectively 50 and 89%) and rabbit preparations (respectively 67 and 92%). Guinea-pig preparations showed higher incidence of severe spontaneous repetitive responses (61 versus 17%, p<0.02). This rabbit model is proposed to investigate both anti- and pro-arrhythmic effects of drugs acting at various levels electrophysiologically, which may be obtained with great power and relatively few (around 10 per group) preparations. This model should now be tested pharmacologically.
Collapse
Affiliation(s)
| | - Michele Schiariti
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of RomeViale del Policlinico 155, I-00161 Rome, Italy
| | - René Rouet
- Université de Caen Basse-Normandie, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardiqueF-14000 Caen, France
| | - Paolo Emilio Puddu
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of RomeViale del Policlinico 155, I-00161 Rome, Italy
| |
Collapse
|
31
|
Doxorubicin-induced Changes of Ventricular Repolarization Heterogeneity: Results of a Chronic Rat Study. Cardiovasc Toxicol 2012; 12:312-7. [DOI: 10.1007/s12012-012-9172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Kharin S, Krandycheva V, Tsvetkova A, Strelkova M, Shmakov D. Remodeling of ventricular repolarization in a chronic doxorubicin cardiotoxicity rat model. Fundam Clin Pharmacol 2012; 27:364-72. [DOI: 10.1111/j.1472-8206.2012.01037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2012; 36:296-305. [PMID: 21656050 DOI: 10.1007/s00059-011-3470-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.
Collapse
Affiliation(s)
- Y Shi
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Toronto General Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Kitagawa K, Kawada K, Morita S, Inada M, Mitsuma A, Sawaki M, Iino S, Inden Y, Murohara T, Imai T, Ando Y. Prospective evaluation of corrected QT intervals and arrhythmias after exposure to epirubicin, cyclophosphamide, and 5-fluorouracil in women with breast cancer. Ann Oncol 2012; 23:743-747. [PMID: 21690231 DOI: 10.1093/annonc/mdr296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Corrected QT (QTc) interval prolongation can induce fatal arrhythmias such as torsade de pointes. PATIENTS AND METHODS To assess the characteristics of QTc intervals and arrhythmias in women with early breast cancer who received FEC100 adjuvant chemotherapy, electrocardiograms (ECGs) were recorded before and after each chemotherapy. Associations between QTc interval prolongation and single nucleotide polymorphisms (SNPs) of potassium channel genes were also investigated. RESULTS A total of 131 ECG records were obtained in 34 patients who received 153 cycles of FEC100. QTc intervals could be measured in 127 records. There was a significant trend toward QTc interval prolongation after each treatment, persisting through four cycles of chemotherapy (P < 0.001). Median QTc interval prolongations were 13, 11, 18, and 14 ms in the first through fourth cycles of chemotherapy, respectively. QTc intervals differed significantly between cycles 1 and 4 before treatment as well as after treatment (P < 0.05). A single supraventricular premature contraction was noted in 3 (2.3%) of the 131 cycles in 2 (5.9%) of the 34 patients. There was no significant association between QTc interval prolongation and SNPs of potassium channel genes. CONCLUSION This prospective study confirmed that FEC100 is associated with significant QTc interval prolongation in women with early breast cancer.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - K Kawada
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - S Morita
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - M Inada
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - A Mitsuma
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - M Sawaki
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital
| | - S Iino
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Y Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - T Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - T Imai
- Department of Breast and Endocrine Surgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Y Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital.
| |
Collapse
|
35
|
Polak S, Wiśniowska B, Glinka A, Fijorek K, Mendyk A. Slow delayed rectifying potassium current (IKs ) - analysis of the in vitro inhibition data and predictive model development. J Appl Toxicol 2012; 33:723-39. [PMID: 22334483 DOI: 10.1002/jat.2719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/16/2023]
Abstract
The excitable cell membranes contain ion channels that allow the ions passage through the specific pores via a passive process. Assessment of the inhibition of the IKr (hERG) current is considered to be the main target during the drug development process, although there are other ionic currents for which drug-triggered modification can either potentiate or mask hERG channel blockade. Information describing the results of in vitro studies investigating the chemical-IKs current interactions has been developed in the current study. Based on the publicly available data sources, 145 records were collected. The final list of publications consists of 64 positions and refers to 106 different molecules connected with IKs current inhibition, with at least one IC50 value measured. Ultimately, 98 of the IC50 values expressed as absolute values were gathered. For 36 records the IC50 was expressed as a relative value. For the 11 remaining records, the inhibition was not clearly expressed. Based on the collected data the predictive models for the IC50 estimation were developed with the use of various algorithms. The extended Quantitative Structure-Activity Relationships (QSAR) methodology was applied and the in vitro research settings were included as independent variables, apart from the physico-chemical descriptors calculated with the use of the Marvin Calculator Plugins. The root mean squared error and normalized root mean squared error values for the best model (an expert system based on two independent artificial neural networks) were 0.86 and 14.04%, respectively. The model was further built into the ToxComp system, the ToxIVIVE tool specialized for cardiotoxicity assessment of drugs.
Collapse
Affiliation(s)
- Sebastian Polak
- Department of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Cracow, Poland.
| | | | | | | | | |
Collapse
|
36
|
Moha ou Maati H, Veyssiere J, Labbal F, Coppola T, Gandin C, Widmann C, Mazella J, Heurteaux C, Borsotto M. Spadin as a new antidepressant: Absence of TREK-1-related side effects. Neuropharmacology 2012; 62:278-88. [DOI: 10.1016/j.neuropharm.2011.07.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/16/2022]
|
37
|
Moha ou Maati H, Peyronnet R, Devader C, Veyssiere J, Labbal F, Gandin C, Mazella J, Heurteaux C, Borsotto M. A human TREK-1/HEK cell line: a highly efficient screening tool for drug development in neurological diseases. PLoS One 2011; 6:e25602. [PMID: 22022421 PMCID: PMC3194802 DOI: 10.1371/journal.pone.0025602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model.
Collapse
Affiliation(s)
- Hamid Moha ou Maati
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Rémi Peyronnet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Christelle Devader
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Julie Veyssiere
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Fabien Labbal
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Carine Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Jean Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Marc Borsotto
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
- * E-mail:
| |
Collapse
|
38
|
Rašković A, Stilinović N, Kolarović J, Vasović V, Vukmirović S, Mikov M. The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules 2011; 16:8601-13. [PMID: 21993249 PMCID: PMC6264541 DOI: 10.3390/molecules16108601] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 12/22/2022] Open
Abstract
Silymarin is a complex of five major compounds, and silibinin is the most biologically active component of the complex. The aim of this study was to investigate, evaluate and confirm the potential cardioprotective and hepatoprotective effects of administration of silymarin, rich in silibinin, at a dose of 60 mg/kg orally for a time-span of 12 days on doxorubicin induced toxicity in male Wistar rats. The in vivo model was used to explore whether silymarin could prevent damage of liver and heart tissue induced by doxorubicin administered every other day at dose of 1.66 mg/kg intraperitoneally for twelve days. In the study the change of body weight, ECG changes, biochemical parameters of oxidative stress, serum activity of alanine and aspartate transaminase, lactate dehydrogenase, creatine kinase and histological preparations of heart and liver samples of treated animals were examined. According to physiological, pharmacological, microscopic and biochemical results, we confirmed that at the examined dose, silymarin exhibits a protective influence on the heart and liver tissue against toxicity induced by doxorubicin.
Collapse
Affiliation(s)
- Aleksandar Rašković
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (V.V.); (S.V.); (M.M.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (V.V.); (S.V.); (M.M.)
| | - Jovanka Kolarović
- Department of Hematology and Oncology, Institute for Child and Youth Health Care of Vojvodina, Novi Sad, 21000 Novi Sad, Serbia; (J.K.)
| | - Velibor Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (V.V.); (S.V.); (M.M.)
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (V.V.); (S.V.); (M.M.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, School of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (A.R.); (V.V.); (S.V.); (M.M.)
| |
Collapse
|
39
|
Puddu PE, Sallé L, Gérard JL, Rouet R, Ducroq J. IKs blockade in border zone arrhythmias from guinea-pig ventricular myocardium submitted to simulated ischemia and reperfusion. Fundam Clin Pharmacol 2011; 26:445-53. [DOI: 10.1111/j.1472-8206.2011.00970.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Anthracyclines for acute lymphoblastic leukemia in a child with congenital long QT syndrome. Int J Hematol 2011; 93:802-805. [PMID: 21512729 DOI: 10.1007/s12185-011-0851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 12/21/2022]
Abstract
Anthracyclines are key drugs for the treatment of children with acute lymphoblastic leukemia (ALL). However, anthracyclines are known to induce QT prolongation, and life-threatening complications, such as torsades de pointe may also occur. To date, there have been no reports on the use of anthracyclines in patients with congenital long QT syndrome (LQTS). We report a child with ALL complicated by congenital LQTS who was treated with anthracyclines. The administration of anthracyclines caused QT-interval prolongation, but this was uneventful with the concomitant administration of magnesium sulfate.
Collapse
|
41
|
Puddu PE, Legrand JC, Sallé L, Rouet R, Ducroq J. IKr vs. IKs blockade and arrhythmogenicity in normoxic rabbit Purkinje fibers: does it really make a difference? Fundam Clin Pharmacol 2011; 25:304-12. [DOI: 10.1111/j.1472-8206.2010.00920.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Valentin JP. Reducing QT liability and proarrhythmic risk in drug discovery and development. Br J Pharmacol 2010; 159:5-11. [PMID: 20141515 PMCID: PMC2823346 DOI: 10.1111/j.1476-5381.2009.00547.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/25/2022] Open
Abstract
Drug-induced torsades de pointes (TdP), a rare, life-threatening, polymorphic, ventricular tachycardia associated with prolongation of the QT interval, has been the main safety reason for the withdrawal of medicines from clinical use over the last decade. Most often, drugs that prolong the action potential and delay ventricular repolarization do so through blockade of outward (repolarizing) currents, predominantly the rapid delayed rectifying potassium current, I(Kr). While QT interval prolongation is not a safety concern per se, in a small percentage of people, it has been associated with TdP, which either spontaneously terminates or degenerates into ventricular fibrillation. Furthermore, recent data suggest that shortening of the QT interval may also be a new safety issue waiting to surface. This review article summarizes the presentations given at a symposium entitled 'Reducing QT liability and proarrhythmic risk in drug discovery and development', which was part of the Federation of the European Pharmacological Societies congress, Manchester, UK, 13-17 July 2008. The objective of this symposium was to assess the effects of implementing the latest regulatory guidance documents (International Conference on Harmonization S7A/B and E14), as well as new scientific and technical trends on the ability of the pharmaceutical industry to reduce and manage the QT liability and associated potential proarrhythmic risk, and contribute to the discovery and development of safer medicines. This review outlines the key messages from communications presented at this symposium and attempts to highlight some of the key challenges that remain to be addressed.
Collapse
|
43
|
Jung R, Wendeler MW, Danevad M, Himmelbauer H, Geßner R. Phylogenetic origin of LI-cadherin revealed by protein and gene structure analysis. Cell Mol Life Sci 2004; 61:1157-66. [PMID: 15141301 PMCID: PMC11138757 DOI: 10.1007/s00018-004-3470-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intestine specific LI-cadherin differs in its overall structure from classical and desmosomal cadherins by the presence of seven instead of five cadherin repeats and a short cytoplasmic domain. Despite the low sequence similarity, a comparative protein structure analysis revealed that LI-cadherin may have originated from a five-repeat predecessor cadherin by a duplication of the first two aminoterminal repeats. To test this hypothesis, we cloned the murine LI-cadherin gene and compared its structure to that of other cadherins. The intron-exon organization, including the intron positions and phases, is perfectly conserved between repeats 3-7 of LI-cadherin and 1-5 of classical cadherins. Moreover, the genomic structure of the repeats 1-2 and 3-4 is identical for LI-cadherin and highly similar to that of the repeats 1-2 of classical cadherins. These findings strengthen our assumption that LI-cadherin originated from an ancestral cadherin with five domains by a partial gene duplication event.
Collapse
Affiliation(s)
- R. Jung
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Schering AG, Müllerstr. 178, 13342 Berlin, Germany
| | - M. W. Wendeler
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - M. Danevad
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - H. Himmelbauer
- Max-Planck-Institute of Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - R. Geßner
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|