1
|
El Khiat A, El Hiba O, Tamegart L, Rais H, Fdil N, Sellami S, El Mokhtar MA, Gamrani H. Time dependent alteration of locomotor behavior in rat with acute liver failure induced cerebellar neuroinflammation and neuro-astroglial damage. J Chem Neuroanat 2021; 119:102055. [PMID: 34863855 DOI: 10.1016/j.jchemneu.2021.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Hepatic encephalopathy (HE) is a neurophysiological syndrome secondary to acute or chronic liver failure. Studies showed that HE patients exhibit a deficit in motor coordination, which may result from cerebellar functional impairment. The aim of this study is to assess the time-dependent alteration of locomotor behavior and the glial and neuronal alteration in rat with acute HE induced chemically. The study was carried out in male Sprague-Dawley rats with thioacetamide (TAA) induced acute liver failure at different stages 12 h, 24 h and 36 h. Hepatic and renal functions were assessed via various biochemical and histopathological examinations, while the cerebellum and the midbrain were examined using histology and immunohistochemistry for tyrosine hydroxylase (TH), cyclooxygenase-2 (COX-2) and glial fibrillary acidic protein (GFAP). We used as well, the open field test and the Rotarod test for assessing the locomotor activity and coordination. Our data showed a progressive loss of liver function and a progressive alteration in locomotor behavior and motor coordination in acute HE rats. In the cerebellum, we noted an increase in the degeneration of cerebellar Purkinje neurons parallel to increased COX-2 immunoreactivity together with astrocytic morphology and density changes. Likewise, in substantia nigra pars compacta, TH levels were reduced. We showed through the current study, a progressive deterioration in locomotor behavior in acute HE rats, as a result of Purkinje neurons death and a deficient dopaminergic neurotransmission, together with the morpho-functional astroglial modifications involving the oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Abdelaati El Khiat
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ouarzazate, Morocco.
| | - Omar El Hiba
- Nutritional Physiopathologies and Toxicology Team, faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.
| | - Lahcen Tamegart
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hanane Rais
- Laboratory of Morphosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco; Mohammed VI University Hospital, Marrakech, Morocco
| | - Naima Fdil
- Metabolics platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayyad University, Sidi Abbad, BP 40000 Marrakech, Morocco
| | | | - Mohamed Ait El Mokhtar
- Laboratory of Biochemistry, Environment &Agri-food URAC 36, Department of Biology, Faculty of Sciences and Techniques, Mohmmedia, Hassan II University of Casablanca, Morocco
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco.
| |
Collapse
|
2
|
Miller AD, Miller CR, Rossmeisl JH. Canine Primary Intracranial Cancer: A Clinicopathologic and Comparative Review of Glioma, Meningioma, and Choroid Plexus Tumors. Front Oncol 2019; 9:1151. [PMID: 31788444 PMCID: PMC6856054 DOI: 10.3389/fonc.2019.01151] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
In the dog, primary intracranial neoplasia represents ~2-5% of all cancers and is especially common in certain breeds including English and French bulldogs and Boxers. The most common types of primary intracranial cancer in the dog are meningioma, glioma, and choroid plexus tumors, generally occurring in middle aged to older dogs. Much work has recently been done to understand the characteristic imaging and clinicopathologic features of these tumors. The gross and histologic landscape of these tumors in the dog compare favorably to their human counterparts with many similarities noted in histologic patterns, subtype, and grades. Data informing the underlying molecular abnormalities in the canine tumors have only begun to be unraveled, but reveal similar pathways are mutated between canine and human primary intracranial neoplasia. This review will provide an overview of the clinicopathologic features of the three most common forms of primary intracranial cancer in the dog, delve into the comparative aspects between the dog and human neoplasms, and provide an introduction to current standard of care while also highlighting novel, experimental treatments that may help bridge the gap between canine and human cancer therapies.
Collapse
Affiliation(s)
- Andrew D. Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - C. Ryan Miller
- Division of Neuropathology, Department of Pathology, O'Neal Comprehensive Cancer Center and Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, United States
| | - John H. Rossmeisl
- Section of Neurology and Neurosurgery, Veterinary and Comparative Neuro-Oncology Laboratory, Department of Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
3
|
Hicks J, Platt S, Kent M, Haley A. Canine brain tumours: a model for the human disease? Vet Comp Oncol 2015; 15:252-272. [PMID: 25988678 DOI: 10.1111/vco.12152] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Canine brain tumours are becoming established as naturally occurring models of disease to advance diagnostic and therapeutic understanding successfully. The size and structure of the dog's brain, histopathology and molecular characteristics of canine brain tumours, as well as the presence of an intact immune system, all support the potential success of this model. The limited success of current therapeutic regimens such as surgery and radiation for dogs with intracranial tumours means that there can be tremendous mutual benefit from collaboration with our human counterparts resulting in the development of new treatments. The similarities and differences between the canine and human diseases are described in this article, emphasizing both the importance and limitations of canines in brain tumour research. Recent clinical veterinary therapeutic trials are also described to demonstrate the areas of research in which canines have already been utilized and to highlight the important potential benefits of translational research to companion dogs.
Collapse
Affiliation(s)
- J Hicks
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - S Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A Haley
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|