1
|
Tuning of Liver Sieve: The Interplay between Actin and Myosin Regulatory Light Chain Regulates Fenestration Size and Number in Murine Liver Sinusoidal Endothelial Cells. Int J Mol Sci 2022; 23:ijms23179850. [PMID: 36077249 PMCID: PMC9456121 DOI: 10.3390/ijms23179850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations—after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.
Collapse
|
2
|
Mak KM, Kee D, Shin DW. Alcohol-associated capillarization of sinusoids: A critique since the discovery by Schaffner and Popper in 1963. Anat Rec (Hoboken) 2021; 305:1592-1610. [PMID: 34766732 DOI: 10.1002/ar.24829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
This article reviews the literature on capillarization of hepatic sinusoids since its discovery in 1963. Liver sinusoidal endothelial cells are uniquely fenestrated and lack an underlying basement membrane. In chronic liver disease, the sinusoids capillarize and transform into systemic capillaries, a process termed capillarization of sinusoids. The histopathology is marked by defenestration, basement membrane formation, and space of Disse fibrogenesis. Capillarized sinusoids compromise the bidirectional exchange of materials between sinusoids and hepatocytes, leading to hepatocellular dysfunction. Sinusoidal capillarization was first described in active cirrhosis of alcoholics in 1963. Since then, it has been found in early and progressive stages of alcoholic hepatic fibrosis before the onset of cirrhosis. The sinusoidal structure is not altered in alcoholic steatosis without fibrosis. Defenestration impairs the ability of the endothelium to filter chylomicron remnants from sinusoids into the Disse's space, contributing to alcohol-induced postprandial hyperlipidemia and possibly atherosclerosis. Ethanol also modulates the fenestration dynamics in animals. In baboons, chronic alcohol consumption diminishes endothelial porosity in concomitance with hepatic fibrogenesis and in rats defenestrates the endothelium in the absence of fibrosis, and sometimes capillarizes the sinusoids. Acute ethanol ingestion enlarges fenestrations in rats and contracts fenestrations in rabbits. In sinusoidal endothelial cell culture, ethanol elicits fenestration dilation, which is likely related to its interaction with fenestration-associated cytoskeleton. Ethanol potentiates sinusoidal injury caused by cocaine, acetaminophen or lipopolysaccharide in mice and rats. Understanding ethanol's mechanisms on pathogenesis of sinusoidal capillarization and fenestration dynamics will lead to development of methods to prevent risks for atherosclerosis in alcoholism.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dustin Kee
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Da Wi Shin
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
4
|
Wei Z, Lei J, Shen F, Dai Y, Sun Y, Liu Y, Dai Y, Jian Z, Wang S, Chen Z, Liao K, Hong S. Cavin1 Deficiency Causes Disorder of Hepatic Glycogen Metabolism and Neonatal Death by Impacting Fenestrations in Liver Sinusoidal Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000963. [PMID: 33042738 PMCID: PMC7539207 DOI: 10.1002/advs.202000963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Indexed: 05/05/2023]
Abstract
It has been reported that Cavin1 deficiency causes lipodystrophy in both humans and mice by affecting lipid metabolism. The ablation of Cavin1 in rodents also causes a significant deviation from Mendelian ratio at weaning in a background-dependent manner, suggesting the presence of undiscovered functions of Cavin1. In the current study, the results show that Cavin1 deficiency causes neonatal death in C57BL/6J mice by dampening the storage and mobilization of glycogen in the liver, which leads to lethal neonatal hypoglycemia. Further investigation by electron microscopy reveals that Cavin1 deficiency impairs the fenestration in liver sinusoidal endothelial cells (LSECs) and impacts the permeability of endothelial barrier in the liver. Mechanistically, Cavin1 deficiency inhibits the RhoA-Rho-associated protein kinase 2-LIM domain kinase-Cofilin signaling pathway and suppresses the dynamics of the cytoskeleton, and eventually causes the reduction of fenestrae in LSECs. In addition, the defect of fenestration in LSECs caused by Cavin1 deficiency can be rescued by treatment with the F-actin depolymerization reagent latrunculin A. In summary, the current study reveals a novel function of Cavin1 on fenestrae formation in LSECs and liver glycogen metabolism, which provide an explanation for the neonatal death of Cavin1 null mice and a potential mechanism for metabolic disorders in patients with Cavin1 mutation.
Collapse
Affiliation(s)
- Zhuang Wei
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Jigang Lei
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- The Department of BiologyTongji UniversityShanghai200092China
| | - Feng Shen
- Department of Hepatobiliary SurgeryDongfeng HospitalHubei University of MedicineShiyanHubei442001China
| | - Yuxiang Dai
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseaseShanghai200031P. R. China
| | - Yan Sun
- Masonic Medical Research Institute2150 Bleecker StUticaNY13501USA
| | - Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
| | - Yan Dai
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- State Key Laboratory of Cell BiologyKey Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Zhijie Jian
- Department of Radiologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710049China
| | - Shilong Wang
- The Department of BiologyTongji UniversityShanghai200092China
| | - Zhengjun Chen
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
- State Key Laboratory of Cell BiologyKey Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Kan Liao
- Key Laboratory of Systems BiologyInnovation Center for Cell Signaling NetworkCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesCAS320 Yueyang RoadShanghai200031China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life SciencesHuman Phenome InstituteFudan UniversityShanghai200433China
| |
Collapse
|
5
|
Zapotoczny B, Braet F, Wisse E, Lekka M, Szymonski M. Biophysical nanocharacterization of liver sinusoidal endothelial cells through atomic force microscopy. Biophys Rev 2020; 12:625-636. [PMID: 32424787 PMCID: PMC7311612 DOI: 10.1007/s12551-020-00699-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
The structural-functional hallmark of the liver sinusoidal endothelium is the presence of fenestrae grouped in sieve plates. Fenestrae are open membrane bound pores supported by a (sub)membranous cytoskeletal lattice. Changes in number and diameter of fenestrae alter bidirectional transport between the sinusoidal blood and the hepatocytes. Their physiological relevance has been shown in different liver disease models. Although the structural organization of fenestrae has been well documented using different electron microscopy approaches, the dynamic nature of those pores remained an enigma until the recent developments in the research field of four dimensional (4-D) AFM. In this contribution we highlight how AFM as a biophysical nanocharacterization tool enhanced our understanding in the dynamic behaviour of liver sinusoidal endothelial fenestrae. Different AFM probing approaches, including spectroscopy, enabled mapping of topography and nanomechanical properties at unprecedented resolution under live cell imaging conditions. This dynamic biophysical characterization approach provided us with novel information on the 'short' life-span, formation, disappearance and closure of hepatic fenestrae. These observations are briefly reviewed against the existing literature.
Collapse
Affiliation(s)
| | - Filip Braet
- Faculty of Medicine and Health, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia.,Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eddie Wisse
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, Maastricht, Netherlands
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - Marek Szymonski
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Zapotoczny B, Szafranska K, Kus E, Braet F, Wisse E, Chlopicki S, Szymonski M. Tracking Fenestrae Dynamics in Live Murine Liver Sinusoidal Endothelial Cells. Hepatology 2019; 69:876-888. [PMID: 30137644 DOI: 10.1002/hep.30232] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
The fenestrae of liver sinusoidal endothelial cells (LSECs) allow passive transport of solutes, macromolecules, and particulate material between the sinusoidal lumen and the liver parenchymal cells. Until recently, fenestrae and fenestrae-associated structures were mainly investigated using electron microscopy on chemically fixed LSECs. Hence, the knowledge about their dynamic properties has remained to date largely elusive. Recent progress in atomic force microscopy (AFM) has allowed the study of live cells in three dimensions (X, Y, and Z) over a prolonged time (t) and this at unprecedented speeds and resolving power. Hence, we employed the latest advances in AFM imaging on living LSECs. As a result, we were able to monitor the position, size, and number of fenestrae and sieve plates using four-dimensional AFM (X, Y, Z, and t) on intact LSECs in vitro. During these time-lapse experiments, dynamic data were collected on the origin and morphofunctional properties of the filtration apparatus of LSECs. We present structural evidence on single laying and grouped fenestrae, thereby elucidating their dynamic nature from formation to disappearance. We also collected data on the life span of fenestrae. More especially, the formation and closing of entire sieve plates were observed, and how the continuous rearrangement of sieve plates affects the structure of fenestrae within them was recorded. We observed also the dawn and rise of fenestrae-forming centers and defenestration centers in LSECs under different experimental conditions. Conclusion: Utilizing a multimodal biomedical high-resolution imaging technique we collected fine structural information on the life span, formation, and disappearance of LSEC fenestrae; by doing so, we also gathered evidence on three different pathways implemented in the loss of fenestrae that result in defenestrated LSECs.
Collapse
Affiliation(s)
- Bartlomiej Zapotoczny
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Karolina Szafranska
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Filip Braet
- Discipline of Anatomy and Histology, School of Medical Sciences; Cellular Imaging Facility, Charles Perkins Centre; and Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW, Australia
| | - Eddie Wisse
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, and Department of Internal Medicine/Hepatology, The University of Maastricht, Maastricht, The Netherlands
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Qin L, Crawford JM. Anatomy and Cellular Functions of the Liver. ZAKIM AND BOYER'S HEPATOLOGY 2018:2-19.e4. [DOI: 10.1016/b978-0-323-37591-7.00001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Abstract
Sepsis affects practically all aspects of endothelial cell (EC) function and is thought to be the key factor in the progression from sepsis to organ failure. Endothelial functions affected by sepsis include vasoregulation, barrier function, inflammation, and hemostasis. These are among other mechanisms often mediated by glycocalyx shedding, such as abnormal nitric oxide metabolism, up-regulation of reactive oxygen species generation due to down-regulation of endothelial-associated antioxidant defenses, transcellular communication, proteases, exposure of adhesion molecules, and activation of tissue factor. This review covers current insight in EC-associated hemostatic responses to sepsis and the EC response to inflammation. The endothelial cell lining is highly heterogeneous between different organ systems and consequently also in its response to sepsis. In this context, we discuss the response of the endothelial cell lining to sepsis in the kidney, liver, and lung. Finally, we discuss evidence as to whether the EC response to sepsis is adaptive or maladaptive. This study is a result of an Acute Dialysis Quality Initiative XIV Sepsis Workgroup meeting held in Bogota, Columbia, between October 12 and 15, 2014.
Collapse
|
9
|
Sørensen KK, Simon‐Santamaria J, McCuskey RS, Smedsrød B. Liver Sinusoidal Endothelial Cells. Compr Physiol 2015; 5:1751-74. [DOI: 10.1002/cphy.c140078] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
11
|
Braet F, Wisse E. AFM imaging of fenestrated liver sinusoidal endothelial cells. Micron 2012; 43:1252-8. [PMID: 22464743 DOI: 10.1016/j.micron.2012.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023]
Abstract
Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the market allowing comfortable correlative microscopy.
Collapse
Affiliation(s)
- F Braet
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
12
|
Yokomori H, Oda M, Yoshimura K, Hibi T. Recent advances in liver sinusoidal endothelial ultrastructure and fine structure immunocytochemistry. Micron 2011; 43:129-34. [PMID: 21906955 DOI: 10.1016/j.micron.2011.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/28/2023]
Abstract
Ultrastructure reports have described that liver sinusoidal endothelial cell (LSEC)s contain a cytoskeletal framework of filamentous actin. Small G protein has emerged as an important regulator of the actin cytoskeleton, and consequently, of cell morphology and motility. We investigated actin filaments in relation to SEF in LSECs using a heavy meromyosin-decorated reaction and thereby elucidated the roles of small G protein and actin cytoskeleton in the morphological and functional alterations of SEF. Caveolin-1 expression has also been found in fenestrations with many characteristics of liver sinusoidal endothelial cells. Currently, fenestral studies and human disease are revealing ways to increase the liver sieve's porosity, which is reduced through pathological mechanisms. Hepatic sinusoidal endothelial dysfunction, which is known to impair endothelium-dependent relaxation in the liver microcirculation, contributes to increased intrahepatic vascular resistance.
Collapse
Affiliation(s)
- Hiroaki Yokomori
- Department of Internal Medicine, Kitasato Medical Center Hospital, Saitama, Japan.
| | | | | | | |
Collapse
|
13
|
|
14
|
Tazaki T, Sasaki T, Uto K, Yamasaki N, Tashiro S, Sakai R, Tanaka M, Oda H, Honda ZI, Honda H. p130Cas, Crk-associated substrate plays essential roles in liver development by regulating sinusoidal endothelial cell fenestration. Hepatology 2010; 52:1089-99. [PMID: 20623582 DOI: 10.1002/hep.23767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED p130Cas, Crk-associated substrate (Cas), is an adaptor/scaffold protein that plays a central role in actin cytoskeletal reorganization. We previously showed that mice in which Cas was deleted (Cas(-/-)) died in utero because of early cardiovascular maldevelopment. To further investigate the in vivo roles of Cas, we generated mice with a hypomorphic Cas allele lacking the exon 2-derived region (Cas(Deltaex2/Deltaex2)), which encodes Src homology domain 3 (SH3) of Cas. Cas(Deltaex2/Deltaex2) mice again died as embryos, but they particularly showed progressive liver degeneration with hepatocyte apoptosis. Because Cas expression in the liver is preferentially detected in sinusoidal endothelial cells (SECs), the observed hepatocyte apoptosis was most likely ascribable to impaired function of SECs. To address this possibility, we stably introduced a Cas mutant lacking the SH3 domain (Cas DeltaSH3) into an SEC line (NP31). Intriguingly, the introduction of Cas DeltaSH3 induced a loss of fenestrae, the characteristic cell-penetrating pores in SECs that serve as a critical route for supplying oxygen and nutrients to hepatocytes. The disappearance of fenestrae in Cas DeltaSH3-expressing cells was associated with an attenuation of actin stress fiber formation, a marked reduction in tyrosine phosphorylation of Cas, and defective binding of Cas to CrkII. CONCLUSION Cas plays pivotal roles in liver development through the reorganization of the actin cytoskeleton and formation of fenestrae in SECs.
Collapse
Affiliation(s)
- Tatsuya Tazaki
- Department of Disease Model, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Braet F, Riches J, Geerts W, Jahn KA, Wisse E, Frederik P. Three-dimensional organization of fenestrae labyrinths in liver sinusoidal endothelial cells. Liver Int 2009; 29:603-13. [PMID: 18662275 DOI: 10.1111/j.1478-3231.2008.01836.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Liver sinusoidal endothelial cell (LSEC) fenestrae are membrane-bound pores that are grouped in sieve plates and act as a bidirectional guardian in regulating transendothelial liver transport. The high permeability of the endothelial lining is explained by the presence of fenestrae and by various membrane-bound transport vesicles. The question as to whether fenestrae relate to other transport compartments remains unclear and has been debated since their discovery almost 40 years ago. METHODS In this study, novel insights concerning the three-dimensional (3D) organization of the fenestrated cytoplasm were built on transmission electron tomographical observations on isolated and cultured whole-mount LSECs. Classical transmission electron microscopy and atomic force microscopy imaging was performed to accumulate cross-correlative structural evidence. RESULTS AND CONCLUSIONS The data presented here indicate that different arrangements of fenestrae have to be considered: i.e. open fenestrae that lack any structural obstruction mainly located in the thin peripheral cytoplasm and complexes of multifolded fenestrae organized as labyrinth-like structures that are found in the proximity of the perinuclear area. Fenestrae in labyrinths constitute about one-third of the total LSEC porosity. The 3D reconstructions also revealed that coated pits and small membrane-bound vesicles are exclusively interspersed in the non-fenestrated cytoplasmic arms.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Yokomori H. New insights into the dynamics of sinusoidal endothelial fenestrae in liver sinusoidal endothelial cells. Med Mol Morphol 2008; 41:1-4. [PMID: 18470674 DOI: 10.1007/s00795-007-0390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/05/2007] [Indexed: 02/08/2023]
Abstract
Ultrastructural studies have shown that liver sinusoidal endothelial cells (LSECs) contain a cytoskeletal framework of filamentous actin, and that the presence of actin in the form of a calmodulin-actomyosin complex is responsible for regulation of the diameter of sinusoidal endothelial fenestrae (SEF). Rho has emerged as an important regulator of the actin cytoskeleton and consequently of cell morphology. We investigated actin filaments in relation to SEF in LSEC using heavy meromyosin decorated reaction and elucidated the roles of Rho and actin cytoskeleton in morphological and functional alterations of SEF. Second, according to intracytoplasmic Ca2+ concentration, plasma membrane Ca2+Mg2+-ATPase activities were clearly demonstrated on the outer surface of the labyrinth-like SEF in the isolated LSECs. Furthermore, by investigating intracytoplasmic Ca2+ concentration, we have demonstrated plasma membrane Ca2+Mg2+-ATPase activities on the outer surface of the labyrinth-like SEF in the isolated LSECs. Currently, the majority of fenestral studies are focused on finding ways to increase the liver sieve's porosity, which is reduced through pathological mechanisms.
Collapse
Affiliation(s)
- Hiroaki Yokomori
- Kitasato Institute Medical Center Hospital, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan.
| |
Collapse
|
17
|
Xu H, Shi BM, Lu XF, Liang F, Jin X, Wu TH, Xu J. Vascular endothelial growth factor attenuates hepatic sinusoidal capillarization in thioacetamide-induced cirrhotic rats. World J Gastroenterol 2008; 14:2349-2357. [PMID: 18416461 PMCID: PMC2705089 DOI: 10.3748/wjg.14.2349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 02/15/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of vascular endothelial growth factor (VEGF) transfection on hepatic sinusoidal capillarization. METHODS Enhanced green fluorescent protein (EGFP)/VEGF transfection was confirmed by immunofluorescence microscopy and immunohistochemistry both in primary hepatocytes and in normal liver. Cirrhotic rats were generated by thioacetamide (TAA) administration and then divided into a treatment group, which received injections of 400 microg of plasmid DNA encoding an EGFP-VEGF fusion protein, and a blank group, which received an equal amount of normal saline through the portal vein. The portal vein pressure was measured in the normal and cirrhotic state, in treated and blank groups. The average number of fenestrae per hepatic sinusoid was determined using transmission electron microscopy (TEM), while the relative abundance of VEGF transcripts was examined by Gene array. RESULTS Green fluorescent protein was observed in the cytoplasms of liver cells under immunofluorescence microscopy 24 h after transfection with EGFP/VEGF plasmid in vitro. Staining with polyclonal antibodies against VEGF illustrated that hepatocytes expressed immunodetectable VEGF both in vitro and in vitro. There were significant differences in the number of fenestrae and portal vein pressures between normal and cirrhotic rats (7.40 +/- 1.71 vs 2.30 +/- 1.16 and 9.32 +/- 0.85 cmH2O vs 17.92 +/- 0.90 cmH2O, P < 0.01), between cirrhotic and treated rats (2.30 +/- 1.16 cmH2O vs 4.60 +/- 1.65 and 17.92 +/- 0.90 cmH2O vs 15.52 +/- 0.93 cmH2O, P < 0.05) and between the treatment group and the blank group (4.60 +/- 1.65 cmH2O vs 2.10 +/- 1.10 cmH2O and 15.52 +/- 0.93 cmH2O vs 17.26 +/- 1.80 cmH2O, P < 0.05). Gene-array analysis revealed that the relative abundance of transcripts of VEGF family members decreased in the cirrhotic state and increased after transfection. CONCLUSION Injection of a plasmid encoding VEGF through the portal vein is an effective method to induce the formation of fenestrae and decrease portal vein pressure in cirrhotic rats. Therefore, it may be a good choice for treating hepatic cirrhosis and portal hypertension.
Collapse
MESH Headings
- Animals
- Capillaries/metabolism
- Cells, Cultured
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/ultrastructure
- Genetic Therapy/methods
- Green Fluorescent Proteins/metabolism
- Hepatocytes/metabolism
- Humans
- Liver/blood supply
- Liver/metabolism
- Liver/ultrastructure
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/therapy
- Male
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Oligonucleotide Array Sequence Analysis
- Portal Pressure
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Recombinant Fusion Proteins/metabolism
- Thioacetamide
- Transfection
- Vascular Endothelial Growth Factor D/genetics
- Vascular Endothelial Growth Factor D/metabolism
Collapse
|
18
|
Saito M, Matsuura T, Nagatsuma K, Tanaka K, Maehashi H, Shimizu K, Hataba Y, Kato F, Kashimori I, Tajiri H, Braet F. The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid. J Membr Biol 2007; 217:115-21. [PMID: 17568973 DOI: 10.1007/s00232-007-9022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/04/2007] [Indexed: 02/07/2023]
Abstract
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.
Collapse
Affiliation(s)
- Masaya Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Straub AC, Stolz DB, Ross MA, Hernández-Zavala A, Soucy NV, Klei LR, Barchowsky A. Arsenic stimulates sinusoidal endothelial cell capillarization and vessel remodeling in mouse liver. Hepatology 2007; 45:205-12. [PMID: 17187425 PMCID: PMC1764828 DOI: 10.1002/hep.21444] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Trivalent arsenic [As(III)] is a well-known environmental toxicant that causes a wide range of organ-specific diseases and cancers. In the human liver, As(III) promotes vascular remodeling, portal fibrosis, and hypertension, but the pathogenesis of these As(III)-induced vascular changes is unknown. To investigate the hypothesis that As(III) targets the hepatic endothelium to initiate pathogenic change, mice were exposed to 0 or 250 parts per billion (ppb) of As(III) in their drinking water for 5 weeks. Arsenic(III) exposure did not affect the overall health of the animals, the general structure of the liver, or hepatocyte morphology. There was no change in the total tissue arsenic levels, indicating that arsenic does not accumulate in the liver at this level of exposure. However, there was significant vascular remodeling with increased sinusoidal endothelial cell (SEC) capillarization, vascularization of the peribiliary vascular plexus (PBVP), and constriction of hepatic arterioles in As(III)-exposed mice. In addition to ultrastructural demonstration of SEC defenestration and capillarization, quantitative immunofluorescence analysis revealed increased sinusoidal PECAM-1 and laminin-1 protein expression, suggesting gain of adherens junctions and a basement membrane. Conversion of SECs to a capillarized, dedifferentiated endothelium was confirmed at the cellular level with demonstration of increased caveolin-1 expression and SEC caveolae, as well as increased membrane-bound Rac1-GTPase. CONCLUSION These data demonstrate that exposure to As(III) causes functional changes in SEC signaling for sinusoidal capillarization that may be initial events in pathogenic changes in the liver.
Collapse
Affiliation(s)
- Adam C. Straub
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark A. Ross
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Araceli Hernández-Zavala
- Center for Environmental and Molecular Biology of the Lung, University of North Carolina, Chapel Hill, NC; and
| | | | - Linda R. Klei
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Aaron Barchowsky
- From the Department of Occupational and Environmental Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
- Address reprint requests to: Aaron Barchowsky, Ph.D., University of Pittsburgh Graduate School of Public Health, Department of Occupational and Environmental Health, Bridgeside Point, 100 Technology Drive, Rm 332, Pittsburgh, PA 15219. E-mail: ; fax: 412-624-9361
| |
Collapse
|
20
|
Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 2007; 70:230-42. [PMID: 17279510 DOI: 10.1002/jemt.20408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yokomori H, Yoshimura K, Ohshima S, Nagai T, Fujimaki K, Nomura M, Oda M, Hibi T. The endothelin-1 receptor-mediated pathway is not involved in the endothelin-1-induced defenestration of liver sinusoidal endothelial cells. Liver Int 2006; 26:1268-76. [PMID: 17105593 DOI: 10.1111/j.1478-3231.2006.01365.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS We previously reported that endothelin (ET)-1 may be involved in the contraction of hepatic sinusoidal endothelial fenestrae (SEF). Rho has emerged as an important regulator of the actin cytoskeleton and consequently cell morphology. To clarify the role of ET receptors [endothelin A receptor (ETAR) and endothelin B receptor (ETBR)] in ET-1-induced defenestration, we studied the size of hepatic SEF under various experimental conditions. METHODS Liver sinusoidal endothelial cells (LSECs) isolated from rat livers by collagenase perfusion were cultured and divided into four groups: control, ET-1 (10(-6) -10(-10) M)-treated, ET-1+selective ETAR antagonist (BQ610)-treated and ET-1+ETBR antagonist (BQ788)-treated groups. SEF morphology was observed by scanning electron microscopy. Protein expressions of ETAR and ETBR, Rho A and phosphorylated myosin light-chain kinase were analyzed by Western blotting. F-actin stress fiber formation was observed by confocal microscopy. Active Rho was measured by Ren's modification. Intracellular free Ca2+ concentration ([Ca2+]i) was measured by fluorescence digital imaging using fura-2 AM by Aqua cosmos. RESULTS ET-1 induced a reduction in the number and size of SEF. ETAR antagonist pretreatment inhibited defenestration induced by low ET-1 concentrations (10(-8) -10(-10) M), whereas ETBR antagonist pretreatment did not block defenestration at low to high ET-1 concentrations (10(-6) -10(-10) M). F-actin stress fibers, Rho A levels and phosphorylated myosin light-chain kinase levels remained the same in various treatments. Active Rho was not detected in control and various treatments. ET-1 did not increase [Ca2+]i. Western blot showed prominent ETBR but scarce ETAR protein expression in LSECs. CONCLUSIONS The present findings demonstrated that ETBR- and ETAR-induced contractile mechanisms are not involved in ET-1-induced defenestration, and that Rho is also not activated. Therefore, ET-1 induces hepatic defenestration by mechanisms other than receptor-mediated contraction.
Collapse
Affiliation(s)
- Hiroaki Yokomori
- Department of Internal Medicine, Kitasato Medical Center Hospital, Saitama 364-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Straub AC, Stolz DB, Vin H, Ross MA, Soucy NV, Klei LR, Barchowsky A. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice. Toxicol Appl Pharmacol 2006; 222:327-36. [PMID: 17123562 PMCID: PMC2084367 DOI: 10.1016/j.taap.2006.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/09/2006] [Indexed: 12/16/2022]
Abstract
The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.
Collapse
Affiliation(s)
- Adam C. Straub
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Harina Vin
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Mark A. Ross
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | - Nicole V. Soucy
- Department of Pharmacology and Toxicology, Dartmouth Medical School
| | - Linda R. Klei
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Publications concerning liver histopathology in fatty liver disease and chronic hepatitis C, iron and copper overload, and liver transplantation from the past year have been surveyed to highlight useful concepts and diagnostic information. RECENT FINDINGS Two microscopic forms of pediatric nonalcoholic steatohepatitis have been described: type 1 in which hepatocyte ballooning and/or pericellular fibrosis accompany the steatosis; and type 2 which has portal tract inflammation and/or fibrosis as the salient accompanying feature. In chronic hepatitis C, the ductular reaction appears to be a major factor associated with fibrosis. In patients transplanted for hepatitis C virus-related cirrhosis, immunostaining of post-transplant liver biopsies for alpha-smooth muscle actin (i.e. in activated hepatic stellate cells) may identify those individuals at risk for severe recurrence. Clinicopathological papers on several forms of non-HFE hemochromatosis were published and Wilson's disease was described in individuals of 60 years or more in age. Cholestasis in childhood was expertly reviewed and histopathologic precursor lesions of hepatocellular carcinoma were also examined in a comprehensive article. SUMMARY Recent publications with impact on liver biopsy interpretation include a morphologic classification of nonalcoholic steatohepatitis in childhood, the differential diagnosis of childhood cholestasis and pathogenetic factors involved in fibrogenesis in chronic hepatitis C.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Saito M, Matsuura T, Masaki T, Maehashi H, Shimizu K, Hataba Y, Iwahori T, Suzuki T, Braet F. Reconstruction of liver organoid using a bioreactor. World J Gastroenterol 2006; 12:1881-8. [PMID: 16609994 PMCID: PMC4087513 DOI: 10.3748/wjg.v12.i12.1881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop the effective technology for reconstruction of a liver organ in vitro using a bio-artificial liver.
METHODS: We previously reported that a radial-flow bioreactor (RFB) could provide a three-dimensional high-density culture system. We presently reconstructed the liver organoid using a functional human hepatocellular carcinoma cell line (FLC-5) as hepatocytes together with mouse immortalized sinusoidal endothelial cell (SEC) line M1 and mouse immortalized hepatic stellate cell (HSC) line A7 as non parenchymal cells in the RFB. Two x 107 FLC-5 cells were incubated in the RFB. After 5 d, 2 x 107 A7 cells were added in a similar manner followed by another addition of 107 M1 cells 5 d later. After three days of perfusion, some cellulose beads with the adherent cells were harvested. The last incubation period included perfusion with 200 nmol/L swinholide A for 2 h and then the remaining cellulose beads along with adherent cells were harvested from the RFB. The cell morphology was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). To assess hepatocyte function, we compared mRNA expression for urea cycle enzymes as well as albumin synthesis by FLC-5 in monolayer cultures compared to those of single-type cultures and cocultures in the RFB.
RESULTS: By transmission electron microscopy, FLC-5, M1, and A7 were arranged in relation to the perfusion side in a liver-like organization. Structures resembling bile canaliculi were seen between FCL-5 cells. Scanning electron microscopy demonstrated fenestrae on SEC surfaces. The number of vesiculo-vacuolar organelles (VVO) and fenestrae increased when we introduced the actin-binding agent swinholide-A in the RFB for 2h. With respect to liver function, urea was found in the medium, and expression of mRNAs encoding arginosuccinate synthetase and arginase increased when the three cell types were cocultured in the RFB. However, albumin synthesis decreased.
CONCLUSION: Co-culture in the RFB system can dramatically change the structure and function of all cell types, including the functional characteristics of hepatocytes. Our system proves effective for reconstruction of a liver organoid using a bio-artificial liver.
Collapse
Affiliation(s)
- Masaya Saito
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Braet F, Soon LL. Diaphragmed fenestrae in the glomerular endothelium versus nondiaphragmed fenestrae in the hepatic endothelium. Kidney Int 2005; 68:1902; author reply 1902-3. [PMID: 16164677 DOI: 10.1038/ki.2005.4496303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|