1
|
Blukacz L, Nuciforo S, Fucile G, Trulsson F, Duthaler U, Wieland S, Heim MH. Inhibition of the transmembrane transporter ABCB1 overcomes resistance to doxorubicin in patient-derived organoid models of HCC. Hepatol Commun 2024; 8:e0437. [PMID: 38696353 PMCID: PMC11068137 DOI: 10.1097/hc9.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.
Collapse
MESH Headings
- Doxorubicin/pharmacology
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Organoids/drug effects
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Cell Proliferation/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Chemoembolization, Therapeutic
- Cell Cycle/drug effects
Collapse
Affiliation(s)
- Lauriane Blukacz
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE Center for Scientific Computing and Center for Data Analytics, University of Basel, Basel, Switzerland
| | - Fredrik Trulsson
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Clinical Pharmacology and Toxicology, University and University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, Clinical Pharmacology and Toxicology, University of Basel, Basel, Switzerland
| | - Stefan Wieland
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
| | - Markus H. Heim
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, Basel, Switzerland
- University Digestive Health Care Center Basel - Clarunis, Basel, Switzerland
| |
Collapse
|
2
|
Huang C, Huang W, Ji P, Song F, Liu T, Li M, Guo H, Huang Y, Yu C, Wang C, Ni W. A Pyrazolate Osmium(VI) Nitride Exhibits Anticancer Activity through Modulating Protein Homeostasis in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232112779. [PMID: 36361570 PMCID: PMC9656236 DOI: 10.3390/ijms232112779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 02/05/2023] Open
Abstract
Interest in the third-row transition metal osmium and its compounds as potential anticancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater inhibitory effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared with cisplatin. Proteomics analysis revealed that Na[OsVI(N)(tpm)2] modulates the expression of protein-transportation-associated, DNA-metabolism-associated, and oxidative-stress-associated proteins in HepG2 cells. Perturbation of protein expression activity by the complex in cancer cells affects the functions of the mitochondria, resulting in high levels of cellular oxidative stress and low rates of cell survival. Moreover, it caused G2/M phase cell cycle arrest and caspase-mediated apoptosis of HepG2 cells. This study reveals a new high-valent osmium complex as an anticancer agent candidate modulating protein homeostasis.
Collapse
Affiliation(s)
- Chengyang Huang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wanqiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Pengchao Ji
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Fuling Song
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Meiyang Li
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Hongzhi Guo
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yongliang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Cuicui Yu
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Chuanxian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
- Correspondence:
| |
Collapse
|
3
|
Ou-Yang L, Cai D, Zhang XF, Yan H. WDNE: an integrative graphical model for inferring differential networks from multi-platform gene expression data with missing values. Brief Bioinform 2021; 22:6272792. [PMID: 33975339 DOI: 10.1093/bib/bbab086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
The mechanisms controlling biological process, such as the development of disease or cell differentiation, can be investigated by examining changes in the networks of gene dependencies between states in the process. High-throughput experimental methods, like microarray and RNA sequencing, have been widely used to gather gene expression data, which paves the way to infer gene dependencies based on computational methods. However, most differential network analysis methods are designed to deal with fully observed data, but missing values, such as the dropout events in single-cell RNA-sequencing data, are frequent. New methods are needed to take account of these missing values. Moreover, since the changes of gene dependencies may be driven by certain perturbed genes, considering the changes in gene expression levels may promote the identification of gene network rewiring. In this study, a novel weighted differential network estimation (WDNE) model is proposed to handle multi-platform gene expression data with missing values and take account of changes in gene expression levels. Simulation studies demonstrate that WDNE outperforms state-of-the-art differential network estimation methods. When applied WDNE to infer differential gene networks associated with drug resistance in ovarian tumors, cell differentiation and breast tumor heterogeneity, the hub genes in the estimated differential gene networks can provide important insights into the underlying mechanisms. Furthermore, a Matlab toolbox, differential network analysis toolbox, was developed to implement the WDNE model and visualize the estimated differential networks.
Collapse
Affiliation(s)
- Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dehan Cai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
4
|
Huang D, Dai H, Tang K, Chen B, Zhu H, Chen D, Li N, Wang Y, Liu C, Huang Y, Yang J, Zhang C, Lin R, He W. A versatile UCST-type composite microsphere for image-guided chemoembolization and photothermal therapy against liver cancer. NANOSCALE 2020; 12:20002-20015. [PMID: 32996987 DOI: 10.1039/d0nr04592f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of novel chemoembolization agents to improve the treatment efficacy of transarterial chemoembolization (TACE) against liver cancer remains an urgent need in clinical practice. Herein, a versatile composite microsphere with upper critical solution temperature (UCST) properties was prepared to encapsulate polydopamine coated superparamagnetic iron oxide nanoparticles (SPION@PDA) and doxorubicin for simultaneous chemoembolization and photothermal therapy. The microspheres were spherical with an average diameter of 100-300 μm and exhibited favorable drug loading capability as well as strong photothermal effect. Strikingly, synergistic enhancement of photothermal therapy and chemotherapy against chemoresistant liver cancer cells was achieved. The in vivo therapeutic efficacy and safety evaluations were performed using rabbit VX2 liver tumor models. It was revealed that a single treatment of the combination of TACE and photothermal procedure resulted in 87.5% complete response and 12.5% partial response for the microsphere group, whereas all tumors in the control group progressed rapidly. Contrast-enhanced computed tomography (CT) evaluation indicated that the tumor diameter decreased by 91.5% after treatment, while that in the control group increased by 86.5%. The pathology-proven tumor necrotic rate was 87.2%, which significantly surpassed that of 65.2% in the control group. Furthermore, serum liver enzyme and biochemical studies indicated a temporary liver injury which can be fully recovered. Our findings demonstrated that this microsphere may be advantageous for enhancing therapeutic efficacy of TACE against liver cancer.
Collapse
Affiliation(s)
- Dan Huang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Xia X, Wang Q, Ye T, Liu Y, Liu D, Song S, Zheng C. NRF2/ABCB1-mediated efflux and PARP1-mediated dampening of DNA damage contribute to doxorubicin resistance in chronic hypoxic HepG2 cells. Fundam Clin Pharmacol 2019; 34:41-50. [PMID: 31420991 DOI: 10.1111/fcp.12505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/09/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
Abstract
Transarterial chemoembolization (TACE)-induced hypoxia can trigger residual liver cancer cells to present a more aggressive phenotype associated with chemoresistance, but the underlying mechanisms are still unknown. In this study, the human liver cancer cell line HepG2 was pre-cultured in different oxygen environments to examine the possible mechanisms of hypoxia-induced doxorubicin resistance. Our study showed that HepG2 cells pre-cultured in a chronic intermittent hypoxic environment exhibited significant resistance to doxorubicin, evidenced by increased intracellular doxorubicin efflux, relatively higher cell proliferation, lower apoptosis, and decreased DNA damage. These changes were accompanied by high levels of NRF2 and ABCB1 under conditions of both chronic and acute hypoxia and PARP1 gene expression only under conditions of chronic hypoxia. SiRNA-mediated silencing of NRF2 gene expression downregulated the expression of ABCB1 and increased the intracellular doxorubicin accumulation and cell apoptosis both in acute and chronic hypoxic HepG2 cells. Moreover, silencing of PARP1 gene expression increased the doxorubicin-induced DNA damage and cell apoptosis in chronic hypoxic cells. On the basis of these findings, we concluded that NRF2/ABCB1-mediated efflux and PARP1-mediated DNA repair contribute to doxorubicin resistance in chronic hypoxic HepG2 cells.
Collapse
Affiliation(s)
- Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Qi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Dehan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China
| |
Collapse
|
6
|
Zhang X, Liu T, Li Z, Feng Y, Corpe C, Liu S, Zhang J, He X, Liu F, Xu L, Shen L, Li S, Xia Q, Peng X, Zhou X, Chen W, Zhang X, Xu J, Wang J. Hepatomas are exquisitely sensitive to pharmacologic ascorbate (P-AscH -). Theranostics 2019; 9:8109-8126. [PMID: 31754384 PMCID: PMC6857065 DOI: 10.7150/thno.35378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Ascorbate is an essential micronutrient known for redox functions at normal physiologic concentrations. In recent decades, pharmacological ascorbate has been found to selectively kill tumour cells. However, the dosing frequency of pharmacologic ascorbate in humans has not yet been defined. Methods: We determined that among five hepatic cell lines, Huh-7 cells were the most sensitive to ascorbate. The effects of high-dose ascorbate on hepatoma were therefore assessed using Huh-7 cells and xenograft tumour mouse model. Results: In Huh-7 cells, ascorbate induced a significant increase in the percentage of cells in the G0/G1 phase, apoptosis and intracellular levels of ROS. High doses of ascorbate (4.0 pmol cell-1), but not low doses of ascorbate (1.0 pmol cell-1), also served as a pro-drug that killed hepatoma cells by altering mitochondrial respiration. Furthermore, in a Huh-7 cell xenograft tumour mouse model, intraperitoneal injection of ascorbate (4.0 g/kg/3 days) but not a lower dose of ascorbate (2.0 g/kg/3 days) significantly inhibited tumour growth. Gene array analysis of HCC tumour tissue from xenograft mice given IP ascorbate (4.0 g/kg/3 days) identified changes in the transcript levels of 192 genes/ncRNAs involved in insulin receptor signalling, metabolism and mitochondrial respiration. Consistent with the array data, gene expression levels of AGER, DGKK, ASB2, TCP10L2, Lnc-ALCAM-3, and Lnc-TGFBR2-1 were increased 2.05-11.35 fold in HCC tumour tissue samples from mice treated with high-dose ascorbate, and IHC staining analysis also verified that AGER/RAGE and DGKK proteins were up-regulated, which implied that AGER/RAGE and DGKK activation might be related to oxidative stress, leading to hepatoma cell death. Conclusions: Our studies identified multiple mechanisms are responsible for the anti-tumour activity of ascorbate and suggest high doses of ascorbate with less frequency will act as a novel therapeutic agent for liver cancer in vivo.
Collapse
Affiliation(s)
- Xuan Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Christopher Corpe
- King's College London, London, Nutritional Science Department, 150 Stamford street, waterloo, London, SE19NH, United Kingdom
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jingpu Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Feng Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Li Xu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Longqiang Shen
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Shun Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Qianlin Xia
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
7
|
Park NH, Cheng W, Lai F, Yang C, Florez de Sessions P, Periaswamy B, Wenhan Chu C, Bianco S, Liu S, Venkataraman S, Chen Q, Yang YY, Hedrick JL. Addressing Drug Resistance in Cancer with Macromolecular Chemotherapeutic Agents. J Am Chem Soc 2018; 140:4244-4252. [PMID: 29504396 DOI: 10.1021/jacs.7b11468] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug resistance to chemotherapeutics is a recurrent issue plaguing many cancer treatment regimens. To circumvent resistance issues, we have designed a new class of macromolecules as self-contained chemotherapeutic agents. The macromolecular chemotherapeutic agents readily self-assemble into well-defined nanoparticles and show excellent activity in vitro against multiple cancer cell lines. These cationic polymers function by selectively binding and lysing cancer cell membranes. As a consequence of this mechanism, they exhibit significant potency against drug-resistant cancer cells and cancer stem cells, prevent cancer cell migration, and do not induce resistance onset following multiple treatment passages. Concurrent experiments with the small-molecule chemotherapeutic, doxorubicin, show aggressive resistance onset in cancer cells, a lack of efficacy against drug-resistant cancer cell lines, and a failure to prevent cancer cell migration. Additionally, the polymers showed anticancer efficacy in a hepatocellular carcinoma patient derived xenograft mouse model. Overall, these results demonstrate a new approach to designing anticancer therapeutics utilizing macromolecular compounds.
Collapse
Affiliation(s)
- Nathaniel H Park
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| | - Wei Cheng
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology , 61 Biopolis Drive, Proteos , Singapore 138673 , Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | | | - Balamurugan Periaswamy
- Genome Institute of Singapore , 60 Biopolis Street, Genome , Singapore 138672 , Singapore
| | - Collins Wenhan Chu
- Genome Institute of Singapore , 60 Biopolis Street, Genome , Singapore 138672 , Singapore
| | - Simone Bianco
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology , 61 Biopolis Drive, Proteos , Singapore 138673 , Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - James L Hedrick
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| |
Collapse
|
8
|
Buschauer S, Koch A, Wiggermann P, Müller M, Hellerbrand C. Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncol Lett 2018. [PMID: 29541235 DOI: 10.3892/ol.2018.7887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transarterial chemoembolization (TACE) is an established therapeutic approach for the treatment of hepatocellular carcinoma (HCC). Although patients who undergo TACE may have prolonged survival, there are indications that the malignancy of residual HCC tissue can increase subsequent to the procedure. Although hypoxia, which occurs during TACE due to ischemia, is known to contribute to angiogenesis, little is known with regard to the undesirable effects of chemotherapeutic agents on residual HCC cells. Doxorubicin is one of the most commonly used drugs in TACE. The aim of the present study was to analyze alterations in Hep3B and HepG2 human HCC cell lines surviving doxorubicin treatment in vitro. Initially, the toxic concentration range was determined, and doxorubicin was subsequently applied in concentrations that killed >80% of the HCC cells. During the first days subsequent to treatment, surviving cells had higher expression levels of the epithelial-mesenchymal transition marker SNAIL, and exhibited increased migratory activity compared with control cells. At 3 weeks after the first doxorubicin treatment, surviving HCC cells tolerated significantly higher doxorubicin concentrations compared with control cells. As a potential explanation for this doxorubicin resistance, significantly increased mRNA expression levels of ATP-binding cassette ABCB1 (multidrug resistance protein 1) and ABCC1 (multidrug resistance-associated protein 1) were observed by reverse transcription-quantitative polymerase chain reaction. In summary, these findings indicate that, following TACE treatment, hypoxia as well as doxorubicin may induce a more malignant phenotype in surviving HCC cells and decrease susceptibility to further chemotherapeutic treatment.
Collapse
Affiliation(s)
- Sebastian Buschauer
- Department of Internal Medicine I, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Andreas Koch
- Department of Internal Medicine I, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, D-93042 Regensburg, Germany.,Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| |
Collapse
|
9
|
Li Y, Wang M, Huang BW, Ping Y, You J, Gao JQ. Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery. Int J Nanomedicine 2017; 12:8557-8572. [PMID: 29238192 PMCID: PMC5716676 DOI: 10.2147/ijn.s148975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although widely used in chemotherapy, free doxorubicin (Dox) might enhance cell malignancy undesirably. Liposomal Dox (Doxlipo) has been clinically approved for the treatment of breast cancer due to reduced systematical toxicity and increased tumor targeting, yet the transcriptome-wide elucidation of the Doxlipo formulations remains elusive. To this end, we explored the impact of two Dox liposomal formulations, Doxlipo mainly containing hydrogenated soy phosphatidylcholine or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, on the transcriptional pattern of MCF-7 cells. The two types of Dox liposomal formulations with different drug release kinetics were investigated to reveal the relationship between the formulation and tumor malignancy. Interestingly, we found that liposomal formulation significantly altered the transcriptional pattern of a wide range of genes. Under equivalent dosage of Dox, free Dox substantially changed the expression of ANK1, ACTA2, GPR87, GDF15, FZD6, and WNT4 in MCF-7 cells. Notably, free Dox induced much higher expression of ABCB1 and significantly enhanced the cell migration behavior in comparison with HSPC Doxlipo under a similar level of cytotoxicity. Finally, siRNA targeting GPR87 was codelivered with cationic Doxlipo to reduce the expression of malignancy-related genes. Our study, for the first time, provides an overview of the influence of formulation on the malignancy at transcriptional level and reveals the relationship between cytotoxicity and cell malignancy from the formulation aspect, offering valuable reference for the future formulation design for anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bu-Wei Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuan Ping
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences.,Zhejiang Province Key Laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Shan M, Xia Q, Yan D, Zhu Y, Zhang X, Zhang G, Guo J, Hou J, Chen W, Zhu T, Zhang X, Xu J, Wang J, Ding T, Zheng J. Molecular analyses of prostate tumors for diagnosis of malignancy on fine-needle aspiration biopsies. Oncotarget 2017; 8:104761-104771. [PMID: 29285211 PMCID: PMC5739598 DOI: 10.18632/oncotarget.22289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/15/2017] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is a common cancer and remains the second-leading cause of cancer-associated mortality in men, but diagnosis of PCa remains a main clinical challenge. To investigate the involvement of differentially expressing genes in PCa with deregulated pathways to allow earlier diagnosis of the disease, transcriptomic analyses of differential expression genes in fine-needle aspiration (FNA) biopsies helped to discriminate PCa from benign prostatic hyperplasia (BPH). We identified 255 genes that were deregulated in prostate tumors compared with BPH tissues. qRT-PCR was conducted to examine the expression levels of the four genes in FNA biopsies and confirmed that ITGBL1 was significantly up-regulated and HOXA7, KRT15 and TGM4 were down-regulated in the PCa compared to the BPH, with a sensitivity of 87.1% and a specificity of 87.8%; the area under the receiver operating characteristic curve was estimated at 0.94, which was significantly improved compared with PSA alone (AUC = 0.82). Moreover, the increased expression of ITGBL1 correlated with total cholesterol, triglyceride and PSA. Our results demonstrated that transcriptomic analyses in FNA biopsies could facilitate rapid identification of potential targets for therapy and diagnosis of PCa.
Collapse
Affiliation(s)
- Menglin Shan
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Qianlin Xia
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Dong Yan
- Department of Medical Oncology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Xuan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Guihong Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Jun Hou
- Pathology, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, P.R. China
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
| | - Tao Ding
- Department of Urology, The Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Fengxian, Shanghai, P.R. China
| | - Jianghua Zheng
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai, P.R. China
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Pudong New Area, Shanghai, P.R. China
| |
Collapse
|
11
|
Pei Z, Zhang X, Ji C, Liu SM, Wang J. Transcriptomic and functional pathways analysis of ascorbate-induced cytotoxicity and resistance of Burkitt lymphoma. Oncotarget 2016; 7:63950-63959. [PMID: 27590508 PMCID: PMC5325416 DOI: 10.18632/oncotarget.11740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Ascorbate is a pro-oxidant that generates hydrogen peroxide-dependent cytotoxity in cancer cells without adversely affecting normal cells. To determine the mechanistic basis for this phenotype, we selected Burkitt lymphoma cells resistant to ascorbate (JLPR cells) and their ascorbate-sensitive parental cells (JLPS cells). Compared with JLPS cells, the increased glucose uptake in JLPR cells (with upregulated glucose transporters, increased antioxidant enzyme activity, and altered cell cycling) conferred ascorbate-induced cytotoxicity and resistance. Transcriptomic profiles and function pathway analysis identified differentially expressed gene signatures for JLPR cells and JLPS cells, which differential expression levels of five genes (ATF5, CD79B, MHC, Myosin, and SAP18) in ascorbate-resistant cells were related to phosphoinositide 3 kinase, cdc42, DNA methylation and transcriptional repression, polyamine regulation, and integrin-linked kinase signaling pathways. These results suggested that coordinated changes occurred in JLPR cells to enable their survival when exposed to the cytotoxic pro-oxidant stress elicited by pharmacologic ascorbate treatment.
Collapse
Affiliation(s)
- Zenglin Pei
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Xuan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Chunxia Ji
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jin Wang
- Scientific Research Center, Shanghai Public Health Clinical Center, Jinshan District, Shanghai 201508, China
| |
Collapse
|
12
|
WANG JIN, YIN HAILIN, PANANDIKAR ASHWINI, GANDHI VARSHA, SEN SUBRATA. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug. Int J Oncol 2015; 47:782-790. [PMID: 26058363 PMCID: PMC4501665 DOI: 10.3892/ijo.2015.3037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022] Open
Abstract
Drug resistance is a major obstacle in successful systemic therapy of metastatic cancer. We analyzed the involvement of cell cycle regulatory proteins in eliciting response to N (phosphonoacetyl)-L-aspartate (PALA), an inhibitor of de novo pyrimidine synthesis, in two metastatic variants of human cancer cell line MDA-MB-435 isolated from lung (L-2) and brain (Br-1) in nude mouse, respectively. L-2 and Br-l cells markedly differed in their sensitivity to PALA. While both cell types displayed an initial S phase delay/arrest, Br-l cells proliferated but most L-2 cells underwent apoptosis. There was distinct elevation in cyclin A, and phosphorylated Rb proteins concomitant with decreased expression of bcl-2 protein in the PALA treated L-2 cells undergoing apoptosis. Markedly elevated cyclin A associated and cdk2 kinase activities together with increased E2F1-DNA binding were detected in these L-2 cells. Induced ectopic cyclin A expression sensitized Br-l cells to PALA by activating an apoptotic pathway. Our findings demonstrate that elevated expression of cyclin A and associated kinase can activate an apoptotic pathway in cells exposed to DNA antimetabolites. Abrogation of this pathway can lead to resistance against these drugs in metastatic variants of human carcinoma cells.
Collapse
Affiliation(s)
- JIN WANG
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - HAILIN YIN
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - ASHWINI PANANDIKAR
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - VARSHA GANDHI
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - SUBRATA SEN
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Program in Human and Molecular Genetics, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
13
|
Wang J, Yan B, Liu SM, Sun H, Pan Y, Guan D, Zhang X, Xu J, Ma H. Transcriptomic and Functional Pathway Analysis of Human Cervical Carcinoma Cancer Cells Response to Microtubule Inhibitor. J Cancer 2015; 6:930-937. [PMID: 26316889 PMCID: PMC4543753 DOI: 10.7150/jca.12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There clearly is a need for effective chemotherapy for early-stage, high-risk patients with human cervical carcinoma. Vinblastine (VBL) is a key microtubule inhibitor, but unproven in its mechanisms as an important antitumor agent in cervical carcinoma. METHODS We selected the concentration of vinblastine inducing 30% cell death for analyses assessing the DNA content, gene expression and transcriptional gene regulation of VBL-treated KB-3 cells. RESULTS Transcriptomic and hierarchical clustering analysis demonstrated that treatment of KB-3 cells with VBL altered the expression of a diverse group of genes with G2/M arrest, which regulated by four oncogenic or tumor suppresser transcription factors (AP1, NFKB1, RELA, and TP53). Functional pathway analysis revealed the disease response to the biological effects of vinblastine in cervical carcinoma chemotherapy including protein ubiquitination pathway, RhoGDI signaling, integrin signaling, agranulocyte adhesion and biapedesis, and actin nucleation pathways. Northern blots also confirmed that KRT-7, FN14, IER3, and ID1 were deregulated in VBL-treated KB-3 cells. CONCLUSION Transcriptional time series profiles and a functional pathway analysis of VBL-treated KB-3 cells will provide a new strategy for improving microtubule inhibitor chemotherapy for cervical carcinoma.
Collapse
Affiliation(s)
- Jin Wang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
- 2. Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Yan
- 3. Laboratory for Food Safety and Environmental Technology, Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Song-Mei Liu
- 4. Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Huanhuan Sun
- 5. Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yonglong Pan
- 3. Laboratory for Food Safety and Environmental Technology, Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Daogang Guan
- 6. Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoyan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jianqing Xu
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Haiqing Ma
- 5. Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
14
|
Liu DL, Li YJ, Yang DH, Wang CR, Xu J, Yao N, Zhang XQ, Chen ZS, Ye WC, Zhang DM. Ganoderma lucidum derived ganoderenic acid B reverses ABCB1-mediated multidrug resistance in HepG2/ADM cells. Int J Oncol 2015; 46:2029-38. [PMID: 25779097 DOI: 10.3892/ijo.2015.2925] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is one of the most common therapeutic option for metastatic tumors and hematological malignancies. ABCB1-mediated multidrug resistance is the major obstacle for chemotherapy. Natural products with diversified structures are ideal source of ABCB1 modulators. Ganoderenic acid B, a lanostane-type triterpene isolated from Ganoderma lucidum, exhibited potent reversal effect on ABCB1-mediated multidrug resistance of HepG2/ADM cells to doxorubicin, vincristine and paclitaxel. Similarly, ganoderenic acid B could also significantly reverse the resistance of ABCB1-overexpressing MCF-7/ADR cells to doxorubicin. Furthermore, ganoderenic acid B notably enhanced intracellular accumulation of rhodamine-123 in HepG2/ADM cells through inhibition of its efflux. ABCB1 siRNA interference assay indicated that the reversal activity of ganoderenic acid B was dependent on ABCB1. Further mechanistic investigations found that ganoderenic acid B did not alter the expression level of ABCB1 and the activity of ABCB1 ATPase. Molecular docking model displayed that the positions of ganoderenic acid B binding to ABCB1 were different from the region of verapamil interacted with ABCB1. Collectively, ganoderenic acid B can enhance the cytotoxicity of chemotherapeutics towards ABCB1-mediated MDR cancer cells via inhibition of the transport function of ABCB1. These findings provide evidence that ganoderenic acid B has the potential to be developed into an ABCB1-mediated multidrug resistance reversal agent.
Collapse
Affiliation(s)
- Dao-Lu Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Dong-Hua Yang
- Biosample Repository, Core Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Chen-Ran Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Xiao-Qi Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
15
|
Huang JT, Liu YJ, Wang J, Xu ZG, Yang Y, Shen F, Liu XH, Zhou X, Liu SM. Next generation digital PCR measurement of hepatitis B virus copy number in formalin-fixed paraffin-embedded hepatocellular carcinoma tissue. Clin Chem 2015; 61:290-296. [PMID: 25361948 DOI: 10.1373/clinchem.2014.230227] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is strongly associated with hepatitis B virus (HBV) infection. False-negative results are common in routine serological tests and quantitative real-time PCR because of HBV surface antigen (HBsAg) variation and low HBV copy number. Droplet digital PCR (ddPCR), a next generation digital PCR, is a novel, sensitive, and specific platform that can be used to improve HBV detection. METHODS A total of 131 HCC cases with different tumor stages and clinical features were initially classified with a serological test as HBsAg positive (n = 107) or negative (n = 24) for HBV infection. Next, DNA templates were prepared from the corresponding formalin-fixed paraffin-embedded (FFPE) tissues to determine HBV copy number by ddPCR. RESULTS HBV copy numbers, successfully determined for all clinical FFPE tissues (n = 131), ranged from 1.1 to 175.5 copies/μL according to ddPCR. The copy numbers of HBV were positively correlated with tumor-nodes-metastasis (P = 0.008) and Barcelona-Clinic Liver Cancer (P = 0.045) classification. Moreover, serum cholinesterase correlated with hepatitis B viral load (P = 0.006). CONCLUSIONS HBV infection is a key factor that influences tumorigenesis in HCC by regulating tumor occurrence and development. ddPCR improves the analytical sensitivity and specificity of measurements in nucleic acids at a single-molecule level and is suitable for HBV detection.
Collapse
Affiliation(s)
| | | | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhi-Gao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | | | - Xing-Hui Liu
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Shanghai, China
| | | | - Song-Mei Liu
- Center for Gene Diagnosis, Medical Research Center, and
| |
Collapse
|
16
|
Liu SM, Chen W, Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014; 4:5577. [PMID: 24993014 PMCID: PMC4894425 DOI: 10.1038/srep05577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/18/2014] [Indexed: 11/03/2022] Open
Abstract
All-trans retinoic acid (ATRA) induces differentiation in various cell types and has been investigated extensively for its effective use in cancer prevention and treatment. Relapsed or refractory disease that is resistant to ATRA is a clinically significant problem. To identify the molecular mechanism that bridges ATRA differentiation and resistance in cancer, we selected the multidrug-resistant leukemia cell line HL-60[R] by exposing it to ATRA, followed by sequential increases of one-half log concentration. A cytotoxicity analysis revealed that HL-60[R] cells were highly resistant to ATRA, doxorubicin, and etoposide. A comparative genome hybridization analysis of HL-60[R] cells identified gains of 4q34, 9q12, and 19q13 and a loss of Yq12 compared with in the parental HL-60 cell line. Transcriptional profiles and functional pathway analyses further demonstrated that 7 genes (FEN1, RFC5, EXO1, XRCC5, PARP1, POLR2F, and GTF2H3) that were relatively up-regulated in HL-60[R] cells and repressed in cells with ATRA-induced differentiation were related to mismatch repair in eukaryotes, DNA double-strand break repair, and nucleotide excision repair pathways. Our results suggest that transcriptional time series profiles and a functional pathway analysis of drug resistance and ATRA-induced cell differentiation will be useful for identifying promyelocytic leukemia patients who are eligible for new therapeutic strategies.
Collapse
Affiliation(s)
- Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Acerinol, a cyclolanstane triterpenoid from Cimicifuga acerina, reverses ABCB1-mediated multidrug resistance in HepG2/ADM and MCF-7/ADR cells. Eur J Pharmacol 2014; 733:34-44. [DOI: 10.1016/j.ejphar.2014.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 01/10/2023]
|
18
|
Yu H, Lin CC, Li YY, Zhao Z. Dynamic protein interaction modules in human hepatocellular carcinoma progression. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S2. [PMID: 24564909 PMCID: PMC4029569 DOI: 10.1186/1752-0509-7-s5-s2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Gene expression profiles have been frequently integrated with the human protein interactome to uncover functional modules under specific conditions like disease state. Beyond traditional differential expression analysis, differential co-expression analysis has emerged as a robust approach to reveal condition-specific network modules, with successful applications in a few human disease studies. Hepatocellular carcinoma (HCC), which is often interrelated with the Hepatitis C virus, typically develops through multiple stages. A comprehensive investigation of HCC progression-specific differential co-expression modules may advance our understanding of HCC's pathophysiological mechanisms. Results Compared with differentially expressed genes, differentially co-expressed genes were found more likely enriched with Hepatitis C virus binding proteins and cancer-mutated genes, and they were clustered more densely in the human reference protein interaction network. These observations indicated that a differential co-expression approach could outperform the standard differential expression network analysis in searching for disease-related modules. We then proposed a differential co-expression network approach to uncover network modules involved in HCC development. Specifically, we discovered subnetworks that enriched differentially co-expressed gene pairs in each HCC transition stage, and further resolved modules with coherent co-expression change patterns over all HCC developmental stages. Our identified network modules were enriched with HCC-related genes and implicated in cancer-related biological functions. In particular, APC and YWHAZ were highlighted as two most remarkable genes in the network modules, and their dynamic interaction partnership was resolved in HCC development. Conclusions We demonstrated that integration of differential co-expression with the protein interactome could outperform the traditional differential expression approach in discovering network modules of human diseases. In our application of this approach to HCC's gene expression data, we successfully identified subnetworks with marked differential co-expression in individual HCC stage transitions and network modules with coherent co-expression change patterns over all HCC developmental stages. Our results shed light on subtle HCC mechanisms, including temporal activation and dismissal of pivotal functions and dynamic interaction partnerships of key genes.
Collapse
|
19
|
Zhang DM, Shu C, Chen JJ, Sodani K, Wang J, Bhatnagar J, Lan P, Ruan ZX, Xiao ZJ, Ambudkar SV, Chen WM, Chen ZS, Ye WC. BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo. Mol Pharm 2012; 9:3147-59. [PMID: 23046348 PMCID: PMC8375564 DOI: 10.1021/mp300249s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
23-O-(1,4'-Bipiperidine-1-carbonyl)betulinic acid (BBA), a synthetic derivative of 23-hydroxybetulinic acid (23-HBA), shows a reversal effect on multidrug resistance (MDR) in our preliminary screening. Overexpression of ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 has been reported in recent studies to be a major factor contributing to MDR. Our study results showed that BBA enhanced the cytotoxicity of ABCB1 substrates and increased the accumulation of doxorubicin or rhodamine123 in ABCB1 overexpressing cells, but had no effect on non ABCB1 substrate, such as cisplatin; what's more, BBA slightly reversed ABCG2-mediated resistance to SN-38, but did not affect the ABCC1-mediated MDR. Further studies on the mechanism indicated that BBA did not alter the expression of ABCB1 at mRNA or protein levels, but affected the ABCB1 ATPase activity by stimulating the basal activity at lower concentrations and inhibiting the activity at higher concentrations. In addition, BBA inhibited the verapamil-stimulated ABCB1 ATPase activity and the photolabeling of ABCB1 with [(125)I] iodoarylazidoprazosin in a concentration-dependent manner, indicating that BBA directly interacts with ABCB1. The docking study confirmed this notion that BBA could bind to the drug binding site(s) on ABCB1, but its binding position was only partially overlapping with that of verapamil or iodoarylazidoprazosin. Importantly, BBA increased the inhibitory effect of paclitaxel in ABCB1 overexpressing KB-C2 cell xenografts in nude mice. Taken together, our findings suggest that BBA can reverse ABCB1-mediated MDR by inhibiting its efflux function of ABCB1, which supports the development of BBA as a novel potential MDR reversal agent used in the clinic.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang L, Chan JYW, Fung KP. Epigenetic loss of CDH1 correlates with multidrug resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 422:739-44. [PMID: 22634315 DOI: 10.1016/j.bbrc.2012.05.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/12/2012] [Indexed: 01/31/2023]
Abstract
Promoter CpG hypermethylation of tumor suppressor genes is an essential step in cancer progression but little is known about its effect on cancer multidrug resistance. In this study, we showed that CDH1 promoter was hypermethylated in drug resistance of a doxorubicin-induced multidrug resistant hepatocellular carcinoma cell line R-HepG2. Transfection of CDH1 cDNA into R-HepG2 cells led to increased amount of doxorubicin uptake, decreased cell viability, decreased P-glycoprotein expression and increased apoptotic population of cells exposed to doxorubicin. Proto-oncogene tyrosine-protein kinase FYN was over-expressed in R-HepG2 cells which displayed a negative correlation with the expression of CDH1. FYN was knocked down in R-HepG2 cells, leading to less drug resistance by increased cell viability, increased doxorubicin uptake and attenuated P-glycoprotein expression. Our findings identified epigenetic silencing of CDH1 in cancer cells might be a new molecular event of multidrug resistance.
Collapse
Affiliation(s)
- Lei Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | | | | |
Collapse
|
21
|
Abstract
Keratins are the intermediate filament (IF)-forming proteins of epithelial cells. Since their initial characterization almost 30 years ago, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Keratins are obligate heteropolymers and, similarly to other IFs, they contain a dimeric central α-helical rod domain that is flanked by non-helical head and tail domains. The 10-nm keratin filaments participate in the formation of a proteinaceous structural framework within the cellular cytoplasm and, as such, serve an important role in epithelial cell protection from mechanical and non-mechanical stressors, a property extensively substantiated by the discovery of human keratin mutations predisposing to tissue-specific injury and by studies in keratin knockout and transgenic mice. More recently, keratins have also been recognized as regulators of other cellular properties and functions, including apico-basal polarization, motility, cell size, protein synthesis and membrane traffic and signaling. In cancer, keratins are extensively used as diagnostic tumor markers, as epithelial malignancies largely maintain the specific keratin patterns associated with their respective cells of origin, and, in many occasions, full-length or cleaved keratin expression (or lack there of) in tumors and/or peripheral blood carries prognostic significance for cancer patients. Quite intriguingly, several studies have provided evidence for active keratin involvement in cancer cell invasion and metastasis, as well as in treatment responsiveness, and have set the foundation for further exploration of the role of keratins as multifunctional regulators of epithelial tumorigenesis.
Collapse
Affiliation(s)
- V Karantza
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
22
|
|
23
|
Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, Schroeder HWS, Kroemer HK, Völker U, Ritter CA. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics 2010; 10:99-114. [DOI: 10.1002/pmic.200800626] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|