1
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
2
|
Wei H, Zhang HL, Xie JZ, Meng DL, Wang XC, Ke D, Zeng J, Liu R. Protein Phosphatase 2A as a Drug Target in the Treatment of Cancer and Alzheimer's Disease. Curr Med Sci 2020; 40:1-8. [PMID: 32166659 DOI: 10.1007/s11596-020-2140-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes. As a confirmed tumor suppressor, PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells. In the brains of Alzheimer's disease (AD) patients, decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and Aβ generation. In this review, we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD. The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed. It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.
Collapse
Affiliation(s)
- Hui Wei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Liang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Li Meng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ji Zeng
- Department of Clinic Laboratory, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Chai GS, Feng Q, Wang ZH, Hu Y, Sun DS, Li XG, Ke D, Li HL, Liu GP, Wang JZ. Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model. Mol Neurodegener 2017; 12:34. [PMID: 28472990 PMCID: PMC5418850 DOI: 10.1186/s13024-017-0178-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background The impairment of histone acetylation is causally linked to the cognitive decline in Alzheimer’s disease (AD). In addition to histone acetyltransferases (HATs) and histone deacetylases (HDACs), inhibitor of acetyltransferases (INHAT) can also regulate histone acetylation. As a key component of INHAT, level of ANP32A is selectively upregulated in the brain of AD patients. Here we investigated whether downregulating ANP32A can rescue AD-like synapse and memory deficits. Methods RFP-labeled lentiviral ANP32A-shRNA was infused stereotaxically into the hippocampal CA3 region of the human tau transgenic mice (termed htau). The spatial learning and memory were assessed by Morris water maze (MWM). The synaptic function was measured by electrophysiological recording and the spine density was detected by Golgi staining. RT-PCR and Western blotting were used to detect the mRNA and protein levels. Results Elevation of ANP32 in htau transgenic mice was correlated with learning deficits, while the hippocampal infusion of lenti-siANP32A to downregulate ANP32A in 12 m-old htau mice could rescue memory loss. Further studies demonstrated that downregulating ANP32A restored synapse morphology and the function. In the brain of htau mice, the acetylated histone decreased while knockdown ANP32A unmasked histone for a robust acetylation with reduced INHAT complex formation. Downregulating of ANP32A also attenuated AD-like tau hyperphosphorylation. Finally, several AD-associated risk factors, including tau accumulation, β-amyloid and H2O2 exposure, increased ANP32A by activating CCAAT/enhancer binding protein-β (C/EBPβ). Conclusion We conclude that downregulating ANP32A rescues synaptic plasticity and memory ability by reducing INHAT formation and unmasking histone for hyperacetylation. Our findings reveal novel mechanisms for AD memory loss and potential molecular markers for protection. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gao-Shang Chai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiong Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Hao Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Sheng Sun
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
4
|
Feng Q, Chai GS, Wang ZH, Hu Y, Sun DS, Li XG, Ma RH, Li YR, Ke D, Wang JZ, Liu GP. Knockdown of pp32 Increases Histone Acetylation and Ameliorates Cognitive Deficits. Front Aging Neurosci 2017; 9:104. [PMID: 28473768 PMCID: PMC5397422 DOI: 10.3389/fnagi.2017.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/31/2017] [Indexed: 01/10/2023] Open
Abstract
Aging is a cause of cognitive decline in the elderly and the major risk factor for Alzheimer's disease, however, aging people are not all destined to develop into cognitive deficits, the molecular mechanisms underlying this difference in cognition of aging people are obscure. Epigenetic modifications, particularly histone acetylation in the nervous system, play a critical role in regulation of gene expression for learning and memory. An inhibitor of acetyltransferases (INHAT) is reported to suppress histone acetylation via a histone-masking mechanism, and pp32 is a key component of INHAT complex. In the present study, we divided ~18 m-old aged mice into the cognitive-normal and the cognitive-impaired group by Morris water maze, and found that pp32 level was significantly increased in the hippocampus of cognitive-impaired aged mice. The mRNA and protein levels of synaptic-associated proteins decreased with reduced dendrite complexity and histone acetylation. Knockdown of pp32 rescued cognitive decline in cognitive-impaired aged mice with restoration of synaptic-associated proteins, the increase of spine density and elevation of histone acetylation. Our study reveals a novel mechanism underlying the aging-associated cognitive disturbance, indicating that suppression of pp32 might represent a promising therapeutic approach for learning and memory impairments.
Collapse
Affiliation(s)
- Qiong Feng
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Gao-Shang Chai
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China.,Department of Basic Medicine, Wuxi Medical School, Jiangnan UniversityWuxi, China
| | - Zhi-Hao Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Yu Hu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Dong-Sheng Sun
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Xiao-Guang Li
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Rong-Hong Ma
- Department of Laboratory Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and TechnologyWuhan, China
| | - Yi-Rong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan UniversityWuhan, China
| | - Dan Ke
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Gong-Ping Liu
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Department of Pathophysiology, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
5
|
Fotiou D, Kaltsatou A, Tsiptsios D, Nakou M. Evaluation of the cholinergic hypothesis in Alzheimer's disease with neuropsychological methods. Aging Clin Exp Res 2015; 27:727-33. [PMID: 25749905 DOI: 10.1007/s40520-015-0321-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
AIM This study aimed at evaluating the cholinergic hypothesis in Alzheimer's disease (AD) patients utilizing the pupillometry method, cognitive tests and Hamilton Depression Rating Scale (HAM-D), as well as to examine whether a correlation between cognitive tests and pupillometry exists. METHODS Forty-two patients with mean age 69.2 ± 7.0 years and documented AD volunteered to participate in this study, while 33 healthy matched subjects served as controls. All subjects underwent a pupillometric measurement and performed the Wechsler Memory Scale (WMS) and Mini Mental State Examination (MMSE). Also, HAM-D was used to assess the severity of depressive symptoms. The pupillometric parameters studied were (1) latency for the onset of constriction (T1), (2) maximum constriction velocity (VCmax), and (3) maximum constriction acceleration (ACmax). RESULTS In AD patients MMSE and WMS score were correlated with ACmax (r = -0.409, p < 0.05 and r = -0.513, p < 0.05, respectively) and VCmax (r = -0.664, p < 0.05 and r = -0.771, p < 0.05), respectively. Moreover, T1 was found to be significantly increased by 23 % (p < 0.05) in AD patients compared to healthy subjects. Conversely, the mean scores of VCmax and ACmax were significantly decreased in AD patients by 46 % (p < 0.05) and by 47 % (p < 0.05), respectively, as compared to healthy subjects. There was no significant difference between the two groups for HAM-D. Additionally, AD patients showed decreased score in WMS by 40 % (p < 0.05) and in MMSE by 28.5 % (p < 0.05) compared to healthy subjects. Of the indices that were studied VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System. CONCLUSIONS The results of this study demonstrated that there is a correlation between cognitive tests and pupillometry in AD patients. Thus, pupillometry could be considered as a sensitive technique for the investigation of cholinergic deficits, which indirectly lead to memory and cognitive disorders in AD patients.
Collapse
Affiliation(s)
- Dimitrios Fotiou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kaltsatou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece.
| | - Dimitrios Tsiptsios
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Nakou
- Neuroscience Division, Medicine School, A Neurology Clinic of AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
New perspectives on the role of tau in Alzheimer's disease. Implications for therapy. Biochem Pharmacol 2014; 88:540-7. [PMID: 24462919 DOI: 10.1016/j.bcp.2014.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) and related dementias constitute a major public health issue due to an increasingly aged population as a consequence of generally improved medical care and demographic changes. Current drug treatment of AD, the most prevalent dementia, with cholinesterase inhibitors or NMDA antagonists have demonstrated very modest, symptomatic efficacy, leaving an unmet medical need for new, more effective therapies. While drug development efforts in the last two decades have primarily focused on the amyloid cascade hypothesis, so far with disappointing results, tau-based strategies have received little attention until recently despite that the presence of extensive tau pathology is central to the disease. The discovery of mutations within the tau gene that cause fronto-temporal dementia demonstrated that tau dysfunction, in the absence of amyloid pathology, was sufficient to cause neuronal loss and clinical dementia. Abnormal levels and hyperphosphorylation of tau protein have been reported to be the underlying cause of a group of neurodegenerative disorders collectively known as 'tauopathies'. The detrimental consequence is the loss of affinity between this protein and the microtubules, increased production of fibrillary aggregates and the accumulation of insoluble intracellular neurofibrillary tangles. However, it has become clear in recent years that tau is not only a microtubule interacting protein, but rather has additional roles in cellular processes. This review focuses on emerging therapeutic strategies aimed at treating the underlying causes of the tau pathology in tauopathies and AD, including some novel approaches on the verge of providing new treatment paradigms within the coming years.
Collapse
|
7
|
Léger GC, Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev Clin Pharmacol 2014; 6:423-42. [DOI: 10.1586/17512433.2013.811237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev 2013; 12:39-49. [PMID: 22771380 DOI: 10.1016/j.arr.2012.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby that might contributes to tau aggregation. Thus, understanding the regulation modes of tau dephosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these lesions in AD. Among the possible and relatively specific interventions that reverse tau phosphorylation is the stimulation of certain tau phosphatases. Here, we reviewed tau protein phosphatases, their physiological roles and regulation, their involvement in tau phosphorylation and the relevance to AD. We also reviewed the most common compounds acting on each tau phosphatase including PP2A.
Collapse
Affiliation(s)
- Ludovic Martin
- Groupe de Neurobiologie Cellulaire, Homéostasie cellulaire et pathologies, Faculté de Médecine, Limoges, France.
| | | | | | | | | | | |
Collapse
|
9
|
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4:213-38. [PMID: 22339463 DOI: 10.2217/imt.11.170] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The exact mechanisms leading to Alzheimer's disease (AD) are largely unknown, limiting the identification of effective disease-modifying therapies. The two principal neuropathological hallmarks of AD are extracellular β-amyloid (Aβ), peptide deposition (senile plaques) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. During the last decade, most of the efforts of the pharmaceutical industry were directed against the production and accumulation of Aβ. The most innovative of the pharmacological approaches was the stimulation of Aβ clearance from the brain of AD patients via the administration of Aβ antigens (active vaccination) or anti-Aβ antibodies (passive vaccination). Several active and passive anti-Aβ vaccines are under clinical investigation. Unfortunately, the first active vaccine (AN1792, consisting of preaggregate Aβ and an immune adjuvant, QS-21) was abandoned because it caused meningoencephalitis in approximately 6% of treated patients. Anti-Aβ monoclonal antibodies (bapineuzumab and solanezumab) are now being developed. The clinical results of the initial studies with bapineuzumab were equivocal in terms of cognitive benefit. The occurrence of vasogenic edema after bapineuzumab, and more rarely brain microhemorrhages (especially in Apo E ε4 carriers), has raised concerns on the safety of these antibodies directed against the N-terminus of the Aβ peptide. Solanezumab, a humanized anti-Aβ monoclonal antibody directed against the midregion of the Aβ peptide, was shown to neutralize soluble Aβ species. Phase II studies showed a good safety profile of solanezumab, while studies on cerebrospinal and plasma biomarkers documented good signals of pharmacodynamic activity. Although some studies suggested that active immunization may be effective against tau in animal models of AD, very few studies regarding passive immunization against tau protein are currently available. The results of the large, ongoing Phase III trials with bapineuzumab and solanezumab will tell us if monoclonal anti-Aβ antibodies may slow down the rate of deterioration of AD. Based on the new diagnostic criteria of AD and on recent major failures of anti-Aβ drugs in mild-to-moderate AD patients, one could argue that clinical trials on potential disease-modifying drugs, including immunological approaches, should be performed in the early stages of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze SK, Hu JM, Feng ZW, Heese K. Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:219-241. [PMID: 22773961 PMCID: PMC3388733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Tianma (Gastrodia elata Blume) is a traditional Chinese medicine (TCM) often used for the treatment of headache, convulsions, hypertension and neurodegenerative diseases. Tianma also modulates the cleavage of the amyloid precursor protein App and cognitive functions in mice. The neuronal actions of tianma thus led us to investigate its specific effects on neuronal signalling. Accordingly, this pilot study was designed to examine the effects of tianma on the proteome metabolism in differentiated mouse neuronal N2a cells using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach. We identified 2178 proteins, out of which 74 were found to be altered upon tianma treatment in differentiated mouse neuronal N2a cells. Based on the observed data obtained, we hypothesize that tianma could promote neuro-regenerative processes by inhibiting stress-related proteins and mobilizing neuroprotective genes such as Nxn, Dbnl, Mobkl3, Clic4, Mki67 and Bax with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
Affiliation(s)
- Arulmani Manavalan
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Umamaheswari Ramachandran
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Husvinee Sundaramurthi
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mishra
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of ScienceKunming, Yunnan 650204, People’s Republic of China
| | - Zhi Wei Feng
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Klaus Heese
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| |
Collapse
|
11
|
|
12
|
Abstract
The protein tau is the most abundant microtubule associated protein in the central and peripheral nervous system. In the brain, tau plays a role in the assembly and stabilization of microtubules. The function of tau, however, appears to overlap with other microtubule binding proteins. The observation that tau is associated with neurodegenerative diseases has renewed interest in this protein. Various aspects of structure and biochemistry of tau, fibril formation and clinical perspectives, including therapeutic strategies are reviewed in this chapter.
Collapse
|
13
|
Sripathi SR, He W, Um JY, Moser T, Dehnbostel S, Kindt K, Goldman J, Frost MC, Jahng WJ. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. ACTA ACUST UNITED AC 2012; 3:1167-1178. [PMID: 27974994 DOI: 10.4236/abb.2012.38143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.
Collapse
Affiliation(s)
- Srinivas R Sripathi
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Weilue He
- Department of Biological Sciences, Michigan Technological University, Houghton, USA.,Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Ji-Yeon Um
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Trevor Moser
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Stevie Dehnbostel
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Kimberly Kindt
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Wan Jin Jahng
- Department of Biological Sciences, Michigan Technological University, Houghton, USA.,Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
14
|
Lee VMY, Brunden KR, Hutton M, Trojanowski JQ. Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. Cold Spring Harb Perspect Med 2011; 1:a006437. [PMID: 22229117 PMCID: PMC3234455 DOI: 10.1101/cshperspect.a006437] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A hallmark of the Alzheimer disease (AD) brain is the presence of inclusions within neurons that are comprised of fibrils formed from the microtubule-stabilizing protein tau. The formation of misfolded multimeric tau species is believed to contribute to the progressive neuron loss and cognitive impairments of AD. Moreover, mutations in tau have been shown to cause a form of frontotemporal lobar degeneration in which tau neuronal inclusions observed in the brain are similar to those seen in AD. Here we review the more compelling strategies that are designed to reduce the contribution of misfolded tau to AD neuropathology, including those directed at correcting a possible loss of tau function resulting from sequestration of cellular tau and to minimizing possible gain-of-function toxicities caused by multimeric tau species. Finally, we discuss the challenges and potential benefits of tau-directed drug discovery programs.
Collapse
Affiliation(s)
- Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Takeda M, Martínez R, Kudo T, Tanaka T, Okochi M, Tagami S, Morihara T, Hashimoto R, Cacabelos R. Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 2010; 64:592-607. [PMID: 21105952 DOI: 10.1111/j.1440-1819.2010.02148.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dementia is a major health problem in developed countries with over 25 million people affected worldwide and probably over 75 million people at risk during the next 20 years. Alzheimer's disease (AD) is the most frequent cause of dementia (50-70%), followed by vascular dementia (30-40%), and mixed dementia (15-20%). AD pathogenesis is still to be elucidated but it is believed to be the complex interaction between genetic and environmental factors in later life. Three causative genes for familial AD have been identified: amyloid precursor protein, presenilin-1, and presenilin-2. There are 150 genes involved with increased neuronal vulnerability to premature death in the AD brain. Among these susceptibility genes, the apolipoprotein E (ApoE) gene is the most prevalent as a risk for AD pathogenic process in which complex interactions between genetic and environmental factors are involved, leading to a cascade of pathogenic events converging in final pathways to premature neuronal death. Some of these mechanisms are common to several neurodegenerative disorders that differ depending upon the genes affected and the involvement of environmental conditions. ApoE is a key lipoprotein in lipid and cholesterol metabolism and it is also the major risk gene for AD and many other central nervous system disorders. The pathogenic role of ApoE-4 is still to be clarified; however, diverse evidence suggests that ApoE may play pleiotropic functions in dementia and central nervous system disorders.
Collapse
Affiliation(s)
- Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|