1
|
Senchukova MA, Tomchuk O, Shurygina EI. Helicobacter pylori in gastric cancer: Features of infection and their correlations with long-term results of treatment. World J Gastroenterol 2021; 27:6290-6305. [PMID: 34712033 PMCID: PMC8515796 DOI: 10.3748/wjg.v27.i37.6290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a spiral-shaped bacterium responsible for the development of chronic gastritis, gastric ulcer, gastric cancer (GC), and MALT-lymphoma of the stomach. H. pylori can be present in the gastric mucosa (GM) in both spiral and coccoid forms. However, it is not known whether the severity of GM contamination by various vegetative forms of H. pylori is associated with clinical and morphological characteristics and long-term results of GC treatment. AIM To establish the features of H. pylori infection in patients with GC and their correlations with clinical and morphological characteristics of diseases and long-term results of treatment. METHODS Of 109 patients with GC were included in a prospective cohort study. H. pylori in the GM and tumor was determined by rapid urease test and by immunohistochemically using the antibody to H. pylori. The results obtained were compared with the clinical and morphological characteristics and prognosis of GC. Statistical analysis was performed using the Statistica 10.0 software. RESULTS H. pylori was detected in the adjacent to the tumor GM in 84.5% of cases, of which a high degree of contamination was noted in 50.4% of the samples. Coccoid forms of H. pylori were detected in 93.4% of infected patients, and only coccoid-in 68.9%. It was found that a high degree of GM contamination by the coccoid forms of H. pylori was observed significantly more often in diffuse type of GC (P = 0.024), in poorly differentiated GC (P = 0.011), in stage T3-4 (P = 0.04) and in N1 (P = 0.011). In cases of moderate and marked concentrations of H. pylori in GM, a decrease in 10-year relapse free and overall survival from 55.6% to 26.3% was observed (P = 0.02 and P = 0.07, respectively). The relationship between the severity of the GM contamination by the spiral-shaped forms of H. pylori and the clinical and morphological characteristics and prognosis of GC was not revealed. CONCLUSION The data obtained indicates that H. pylori may be associated not only with induction but also with the progression of GC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Olesya Tomchuk
- Department of Histology, Cytology, Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Elena I Shurygina
- Department of Pathology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
2
|
Surawut S, Panpetch W, Makjaroen J, Tangtanatakul P, Thim-Uam A, Wongphoom J, Tumwasorn S, Leelahavanichkul A. Helicobacter pylori Infection Increased Anti-dsDNA and Enhanced Lupus Severity in Symptomatic FcγRIIb-Deficient Lupus Mice. Front Microbiol 2018; 9:1488. [PMID: 30034379 PMCID: PMC6043646 DOI: 10.3389/fmicb.2018.01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
The defect on Fc gamma receptor IIb (FcγRIIb), the only inhibitory FcγR, has been identified as one of the genetic factors increasing susceptibility to lupus. The prevalence of Helicobacter pylori (HP) and FcγRIIb dysfunction-polymorphisms are high among Asians, and their co-existence is possible. Unfortunately, the influence of HP against lupus progression in patients with lupus is still controversial. In this study, the interactions between these conditions were tested with HP infection in 24-week-old FcγRIIb-/- mice (symptomatic lupus). HP induced failure to thrive, increased stomach bacterial burdens and stomach injury (histology and cytokines) in both wild-type and FcγRIIb-/- mice. While the severity of HP infection, as determined by these parameters, was not different between both strains, antibodies production (anti-HP, anti-dsDNA and serum gammaglobulin) were higher in FcγRIIb-/- mice compared to wild-type. Accordingly, HP infection also accelerated the severity of lupus as determined by proteinuria, serum creatinine, serum cytokines, renal histology, and renal immune complex deposition. Although HP increased serum cytokines in both wild-type and FcγRIIb-/- mice, the levels were higher in FcγRIIb-/- mice. As such, HP also increased spleen weight and induced several splenic immune cells responsible for antibody productions (activated B cell, plasma cell and follicular helper T cell) in FcγRIIb-/- mice, but not in wild-type. These data describe the different systemic responses against localized HP infection from diverse host genetic background. In conclusion, the mutual interactions between HP and lupus manifestations of FcγRIIb-/-mice were demonstrated in this study. With the prominent immune responses from the loss of inhibitory signaling in FcγRIIb-/- mice, HP infection in these mice induced intense chronic inflammation, increased antibody production, and enhanced lupus severity. Thus, the increased systemic inflammatory responses due to localized HP inducing gastritis in some patients with lupus may enhance lupus progression. More studies are needed.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Division of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Deen NS, Gong L, Naderer T, Devenish RJ, Kwok T. Analysis of the Relative Contribution of Phagocytosis, LC3-Associated Phagocytosis, and Canonical Autophagy During Helicobacter pylori Infection of Macrophages. Helicobacter 2015; 20:449-59. [PMID: 25864465 DOI: 10.1111/hel.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous findings have suggested that Helicobacter pylori induces autophagic processes and subsequently takes refuge in autophagosomes, thereby contributing to persistent infection. Recently, a noncanonical form of autophagy, LC3 (microtubule-associated protein 1 light chain 3)-associated phagocytosis (LAP), has been shown to be required for efficient clearance of some intracellular bacteria. Whether H. pylori infection induces LAP had not been examined previously. In this study, we determined the extent to which H. pylori infection induces canonical autophagy or LAP in macrophages, and the involvement of the H. pylori cag pathogenicity island (cagPAI) with these processes. METHODS Immunofluorescence confocal microscopy was used to analyze the formation of GFP-LC3 puncta and their colocalization with H. pylori. Transmission electron microscopy was used to detect the ultrastructure of H. pylori-containing compartments. RESULTS The majority of intracellular bacteria (85-95%) were found in phagosomes that were LC3-negative, with a small proportion (4-14%) appearing "free" in the cytosol. Only a very small percentage (0.5-6%) of intracellular H. pylori was sequestered in autophagosomes. Furthermore, no statistically significant difference in the relative distribution of H. pylori in the various compartments was observed between wild-type and cagPAI-mutant bacteria. CONCLUSIONS In macrophages, H. pylori infection does not induce LAP, but can induce canonical autophagy, which entraps a very small fraction of intracellular bacteria. We propose that this subpopulation of intracellular H. pylori might have escaped from phagosomes into the cytosol before being sequestered by autophagosomes. The cagPAI of H. pylori has only minor influence, if any, on the extent of these processes.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
4
|
Milani M, Sharifi Y, Rahmati-Yamchi M, Somi MH, Akbarzadeh A. Immunology and vaccines and nanovaccines for Helicobacter pylori infection. Expert Rev Vaccines 2015; 14:833-40. [PMID: 25645086 DOI: 10.1586/14760584.2015.1008460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori infection is very common worldwide and is an important cause of gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue lymphoma, and gastric adenocarcinoma. Since the eradication requires treatment with multidrug regimens, prevention of primary infection by a suitable vaccine is attractive. Developing vaccines on the spot when and where an infection is breaking out might be possible, thanks to engineered nanoparticles. In this review, the nature of the host immune response to H. pylori infection is considered. We explain recent candidate vaccines and prophylactic or therapeutic immunization strategies for use against H. pylori. We also describe identification of different types of immune responses that may be related to protection against H. pylori infection. Thus, it seems that there is still a strong need to clarify the main protective immune response against H. pylori.
Collapse
Affiliation(s)
- Morteza Milani
- Liver and Gastrointestinal disease research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
5
|
Borlace GN, Keep SJ, Prodoehl MJR, Jones HF, Butler RN, Brooks DA. A role for altered phagosome maturation in the long-term persistence of Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2012; 303:G169-79. [PMID: 22575220 DOI: 10.1152/ajpgi.00320.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vigorous host immune response that is mounted against Helicobacter pylori is unable to eliminate this pathogenic bacterium from its niche in the human gastric mucosa. This results in chronic inflammation, which can develop into gastric or duodenal ulcers in 10% of infected individuals and gastric cancer in 1% of infections. The determinants for these more severe pathologies include host (e.g., high IL-1β expression polymorphisms), bacterial [e.g., cytotoxicity-associated gene (cag) pathogenicity island], and environmental (e.g., dietary nitrites) factors. However, it is the failure of host immune effector cells to eliminate H. pylori that underlies its persistence and the subsequent H. pylori-associated disease. Here we discuss the mechanisms used by H. pylori to survive the host immune response and, in particular, the role played by altered phagosome maturation.
Collapse
Affiliation(s)
- Glenn N Borlace
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Univ. of South Australia, South Australia 5001, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Impaired dendritic cell maturation and IL-10 production following H. pylori stimulation in gastric cancer patients. Appl Microbiol Biotechnol 2012; 96:211-20. [PMID: 22526791 PMCID: PMC3433674 DOI: 10.1007/s00253-012-4034-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 02/08/2023]
Abstract
The current study was to investigate the interaction between Helicobacter pylori and human dendritic cells (DCs). Whether impaired DC function can influence the outcome of H. pylori infections. Human monocyte-derived DCs (MDDCs) from five gastric cancer patients and nine healthy controls were stimulated with H. pylori. Maturation markers of MDDC were examined by flow cytometry. IL-10 and TNF-α released by MDDCs and IL-17 produced by T cells were measured by ELISA. Regulatory signaling pathways of IL-10 were examined by ELISA, western blotting, and chromatin immunoprecipitation assay. The results showed that as compared with healthy individuals, the maturation marker CD40 in MDDCs, IL-17A expression from T cells, and IL-10 expression from MDDCs were significantly lower in gastric cancer patients. Blocking DC-SIGN, TLR2, and TLR4 could reverse H. pylori-associated IL-10 production. Activation of the p38 MAPK and NF-kB signaling pathways concomitant with decreased tri-methylated H3K9 and increased acetylated H3 accounted for the effect of H. pylori on IL-10 expression. Furthermore, upregulated IL-10 expression was significantly suppressed in H. pylori-pulsed MDDCs by histone acetyltransferase and methyltransferase inhibitors. Taken together, impaired DC function contributes to the less effective innate and adaptive immune responses against H. pylori seen in gastric cancer patients. H. pylori can regulate IL-10 production through Toll-like and DC-SIGN receptors, activates p-p38 MAPK signaling and the transcription factors NF-kB, and modulates histone modification.
Collapse
|
7
|
Yang ZX, Lu CY, Yang B, Xia N, Dou KF. PPK knockout attenuates evasion of immune elimination of Helicobacter pylori by macrophages. Shijie Huaren Xiaohua Zazhi 2012; 20:22-26. [DOI: 10.11569/wcjd.v20.i1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the impact of knockout of the polyphosphate kinase gene in Helicobacter pylori (H. pylori) on bacterial evasion of immune elimination by macrophages.
METHODS: A PPK null mutant of H. pylori was constructed by gene homologous recombination. The polyphosphate was extracted from the PPK null mutant and wild type bacteria to compare the amount of polyphosphate by conversion into ATP. PPK null mutant H. pylori or wild type bacteria were co-cultured with murine macrophage cell line Raw 264.1 to compare the bacterial survival in macrophages at 24 h.
RESULTS: A PPK null mutant H. pylori strain was successfully constructed. The amount of polyphosphate in PPK null mutant bacteria was significantly lower than that in wild type bacteria (0.46 nmol Pi/mg Protein ± 0.25 nmol Pi/mg Protein vs 175.33 nmol Pi/mg Protein ± 21.22 nmol Pi/mg Protein, P < 0.01). Compared to wild type H. pylori, the survival rate of PPK null mutant bacteria in macrophages was similar at 2 h but was significantly reduced at 24 h.
CONCLUSION: PPK plays a critical role in synthesizing polyphosphate in H. pylori. PPK knockout in H. pylori significantly impaired their ability to synthesize polyphosphate and to evade immune elimination by macrophages.
Collapse
|