1
|
Scurt FG, Bose K, Mertens PR, Chatzikyrkou C, Herzog C. Cardiac Surgery-Associated Acute Kidney Injury. KIDNEY360 2024; 5:909-926. [PMID: 38689404 PMCID: PMC11219121 DOI: 10.34067/kid.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
AKI is a common and serious complication of cardiac surgery that has a significant impact on patient morbidity and mortality. The Kidney Disease Improving Global Outcomes definition of AKI is widely used to classify and identify AKI associated with cardiac surgery (cardiac surgery-associated AKI [CSA-AKI]) on the basis of changes in serum creatinine and/or urine output. There are various preoperative, intraoperative, and postoperative risk factors for the development of CSA-AKI which should be recognized and addressed as early as possible to expedite its diagnosis, reduce its occurrence, and prevent or ameliorate its devastating complications. Crucial issues are the inaccuracy of serum creatinine as a surrogate parameter of kidney function in the perioperative setting of cardiothoracic surgery and the necessity to discover more representative markers of the pathophysiology of AKI. However, except for the tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 ratio, other diagnostic biomarkers with an acceptable sensitivity and specificity are still lacking. This article provides a comprehensive review of various aspects of CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, prevention, and treatment management.
Collapse
Affiliation(s)
- Florian G. Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R. Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Carolin Herzog
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Identification of Pre-Renal and Intrinsic Acute Kidney Injury by Anamnestic and Biochemical Criteria: Distinct Association with Urinary Injury Biomarkers. Int J Mol Sci 2023; 24:ijms24031826. [PMID: 36768149 PMCID: PMC9916069 DOI: 10.3390/ijms24031826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome of sudden renal excretory dysfunction with severe health consequences. AKI etiology influences prognosis, with pre-renal showing a more favorable evolution than intrinsic AKI. Because the international diagnostic criteria (i.e., based on plasma creatinine) provide no etiological distinction, anamnestic and additional biochemical criteria complement AKI diagnosis. Traditional, etiology-defining biochemical parameters, including the fractional excretion of sodium, the urinary-to-plasma creatinine ratio and the renal failure index are individually limited by confounding factors such as diuretics. To minimize distortion, we generated a composite biochemical criterion based on the congruency of at least two of the three biochemical ratios. Patients showing at least two ratios indicative of intrinsic AKI were classified within this category, and those with at least two pre-renal ratios were considered as pre-renal AKI patients. In this study, we demonstrate that the identification of intrinsic AKI by a collection of urinary injury biomarkers reflective of tubular damage, including NGAL and KIM-1, more closely and robustly coincide with the biochemical than with the anamnestic classification. Because there is no gold standard method for the etiological classification of AKI, the mutual reinforcement provided by the biochemical criterion and urinary biomarkers supports an etiological diagnosis based on objective diagnostic parameters.
Collapse
|
3
|
Diagnosis of Cardiac Surgery-Associated Acute Kidney Injury: State of the Art and Perspectives. J Clin Med 2022; 11:jcm11154576. [PMID: 35956190 PMCID: PMC9370029 DOI: 10.3390/jcm11154576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of cardiac surgery-associated acute kidney injury (CSA-AKI), a syndrome of sudden renal dysfunction occurring in the immediate post-operative period, is still sub-optimal. Standard CSA-AKI diagnosis is performed according to the international criteria for AKI diagnosis, afflicted with insufficient sensitivity, specificity, and prognostic capacity. In this article, we describe the limitations of current diagnostic procedures and of the so-called injury biomarkers and analyze new strategies under development for a conceptually enhanced diagnosis of CSA-AKI. Specifically, early pathophysiological diagnosis and patient stratification based on the underlying mechanisms of disease are presented as ongoing developments. This new approach should be underpinned by process-specific biomarkers including, but not limited to, glomerular filtration rate (GFR) to other functions of renal excretion causing GFR-independent hydro-electrolytic and acid-based disorders. In addition, biomarker-based strategies for the assessment of AKI evolution and prognosis are also discussed. Finally, special focus is devoted to the novel concept of pre-emptive diagnosis of acquired risk of AKI, a premorbid condition of renal frailty providing interesting prophylactic opportunities to prevent disease through diagnosis-guided personalized patient handling. Indeed, a new strategy of risk assessment complementing the traditional scores based on the computing of risk factors is advanced. The new strategy pinpoints the assessment of the status of the primary mechanisms of renal function regulation on which the impact of risk factors converges, namely renal hemodynamics and tubular competence, to generate a composite and personalized estimation of individual risk.
Collapse
|
4
|
Sancho-Martínez SM, Sánchez-Juanes F, Blanco-Gozalo V, Fontecha-Barriuso M, Prieto-García L, Fuentes-Calvo I, González-Buitrago JM, Morales AI, Martínez-Salgado C, Ramos-Barron MA, Gómez-Alamillo C, Arias M, López-Novoa JM, López-Hernández FJ. Urinary TCP1-eta: A Cortical Damage Marker for the Pathophysiological Diagnosis and Prognosis of Acute Kidney Injury. Toxicol Sci 2021; 174:3-15. [PMID: 31825490 DOI: 10.1093/toxsci/kfz242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious syndrome with increasing incidence and health consequences, and high mortality rate among critically ill patients. Acute kidney injury lacks a unified definition, has ambiguous semantic boundaries, and relies on defective diagnosis. This, in part, is due to the absence of biomarkers substratifying AKI patients into pathophysiological categories based on which prognosis can be assigned and clinical treatment differentiated. For instance, AKI involving acute tubular necrosis (ATN) is expected to have a worse prognosis than prerenal, purely hemodynamic AKI. However, no biomarker has been unambiguously associated with tubular cell death or is able to provide etiological distinction. We used a cell-based system to identify TCP1-eta in the culture medium as a noninvasive marker of damaged renal tubular cells. In rat models of AKI, TCP1-eta was increased in the urine co-relating with renal cortical tubule damage. When kidneys from ATN rats were perfused in situ with Krebs-dextran solution, a portion of the urinary TCP1-eta protein content excreted into urine disappeared, and another portion remained within the urine. These results indicated that TCP1-eta was secreted by tubule cells and was not fully reabsorbed by the damaged tubules, both effects contributing to the increased urinary excretion. Urinary TCP1-eta is found in many etiologically heterogeneous AKI patients, and is statistically higher in patients partially recovered from severe AKI. In conclusion, urinary TCP1-eta poses a potential, substratifying biomarker of renal cortical damage associated with bad prognosis.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Sánchez-Juanes
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Miguel Fontecha-Barriuso
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Prieto-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Isabel Fuentes-Calvo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - José M González-Buitrago
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - María A Ramos-Barron
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Gómez-Alamillo
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Manuel Arias
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - José M López-Novoa
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| |
Collapse
|
5
|
Prieto-García L, Vicente-Vicente L, Blanco-Gozalo V, Hidalgo-Thomas O, García-Macías MC, Kurtz A, Layton AT, Sanz AB, Morales AI, Martínez-Salgado C, Pericacho M, Sancho-Martínez SM, López-Hernández FJ. Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury. J Transl Med 2020; 100:1455-1464. [PMID: 32719543 DOI: 10.1038/s41374-020-0473-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
Simultaneous administration of certain antihypertensive (renin-angiotensin system inhibitors and diuretics) and nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a renal toxicity syndrome known as "triple whammy" acute kidney injury (TW-AKI), yet poorly characterized at the pathophysiological level, as no specific experimental model exists on which to conduct preclinical research. Herein, we generated and characterized a rat model of TW-AKI (0.7 mg/kg/day trandolapril +400 mg/kg/day ibuprofen +20 mg/kg/day furosemide). Double treatments involving the NSAID caused a subclinical acute kidney injury, as they reduced glomerular filtration rate to a significant but not sufficient extent to increase Crpl concentration. Only the triple treatment generated an overt AKI with increased Crpl provided that animals were under partial water ingestion restriction. Histological examination revealed no evidence of tissue renal injury, and no proteinuria or makers of renal damage were detected in the urine. These findings, along with a normal fractional excretion of sodium and glucose, indicated that these drug combinations produce a prerenal type of AKI. In fact, blood pressure and renal blood flow were also reduced (most markedly following the triple combination), although renal dysfunction was more pronounced than expected for the corresponding pressure drop, supporting a key pathological role of the interference with renal autoregulation mechanisms. In summary, prerenal TW-AKI only occurs when volemia is challenged (i.e., by furosemide in partially water-deprived animals) under the effects of renin-angiotensin system inhibitors and NSAIDs. This model will facilitate further pathophysiological knowledge for a better diagnosis and clinical handling of this syndrome.
Collapse
Affiliation(s)
- Laura Prieto-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Omar Hidalgo-Thomas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | | | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany.,Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain
| | - Anita T Layton
- Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain.,Departments of Applied Mathematics and Biology, and Schools of Computer Science and Pharmacology, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada
| | - Ana B Sanz
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research Fundación Jiménez Díaz, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.,Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.,Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Miguel Pericacho
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.,Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain
| | - Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,University of Salamanca (USAL), Department of Physiology and Pharmacology, Salamanca, Spain. .,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain. .,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain. .,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain. .,Disease and Theranostic Modeling (DisMOD) Consortium, Salamanca, Spain. .,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.
| |
Collapse
|
6
|
Blanco-Gozalo V, Casanova AG, Sancho-Martínez SM, Prieto M, Quiros Y, Morales AI, Martínez-Salgado C, Agüeros-Blanco C, Benito-Hernández A, Ramos-Barron MA, Gómez-Alamillo C, Arias M, López-Hernández FJ. Combined use of GM2AP and TCP1-eta urinary levels predicts recovery from intrinsic acute kidney injury. Sci Rep 2020; 10:11599. [PMID: 32665654 PMCID: PMC7360779 DOI: 10.1038/s41598-020-68398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Deficient recovery from acute kidney injury (AKI) has immediate and long-term health, clinical and economic consequences. Pre-emptive recovery estimation may improve nephrology referral, optimize decision making, enrollment in trials, and provide key information for subsequent clinical handling and follow-up. For this purpose, new biomarkers are needed that predict outcome during the AKI episode. We hypothesized that damage pattern-specific biomarkers are expected to more closely associate to outcome within distinct subpopulations (i.e. those affected by specific pathological processes determining a specific outcome), as biomarker pleiotropy (i.e. associated to phenomena unrelated to AKI) introduced by unselected, heterogeneous populations may blur statistics. A panel of urinary biomarkers was measured in patients with AKI and their capacity to associate to normal or abnormal recovery was studied in the whole cohort or after sub-classification by AKI etiology, namely pre-renal and intrinsic AKI. A combination of urinary GM2AP and TCP1-eta best associates with recovery from AKI, specifically within the sub-population of renal AKI patients. This two-step strategy generates a multidimensional space in which patients with specific characteristics (i.e. renal AKI patients with good or bad prognosis) can be identified based on a collection of biomarkers working serially, applying pathophysiology-driven criteria to estimate AKI recovery, to facilitate pre-emptive and personalized handling.
Collapse
Affiliation(s)
- Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Prieto
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Yaremi Quiros
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Consuelo Agüeros-Blanco
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Adalberto Benito-Hernández
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - María A Ramos-Barron
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carlos Gómez-Alamillo
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Manuel Arias
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain. .,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain. .,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain. .,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Vicente-Vicente L, Casanova AG, Hernández-Sánchez MT, Pescador M, López-Hernández FJ, Morales AI. A systematic meta-analysis on the efficacy of pre-clinically tested nephroprotectants at preventing aminoglycoside nephrotoxicity. Toxicology 2016; 377:14-24. [PMID: 27940129 DOI: 10.1016/j.tox.2016.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/29/2023]
Abstract
Nephrotoxicity limits the use of aminoglycoside antibiotics. Kidney damage is produced mainly in the renal tubule due to an inflammatory and oxidative process. At preclinical level, many drugs and natural products have been tested as prospective protectors of aminoglycoside nephrotoxicity. The main objective of this work was to make a systematic literature review of preclinical studies about aminoglycoside nephrotoxicity protection and a statistical analysis based on the meta-analysis methodology. Studies published up to January 2016 were identified. After applying inclusion criteria, 54 studies were chosen. The size of the experimental groups, means and standard deviations of data on renal function (i.e. plasma creatinine and blood urea nitrogen [BUN] concentrations) were extracted and registered in a database. The studies were grouped according to the mechanism of nephroprotection and their route of administration. The Mean Difference (95% confidence interval) was calculated for each study and group. 40 of 54 products tested produced an amelioration of aminoglycoside nephrotoxicity based on creatinine results. Also a dose dependent protective effect was observed (both in creatinine and BUN). Products orally administered were more effective than via i.p. Products with attributed antioxidant activity were the most used and those which proved statistically significant nephroprotection as a class effect. Aminoglycoside tubular reuptake inhibitors, excretion inducers and calcium channel blockers also showed a promising and rather homogeneous class tendency towards nephroprotection, although more research is necessary to obtain solid and conclusive results, based on a larger number of studies.
Collapse
Affiliation(s)
- Laura Vicente-Vicente
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - María Teresa Hernández-Sánchez
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Moisés Pescador
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Ana Isabel Morales
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain.
| |
Collapse
|
8
|
M. Sancho-Martínez S, Prieto L, Blanco-Gozalo V, Fontecha-Barriuso M, Vicente-Vicente L, G. Casanova A, Prieto M, Pescador M, I. Morales A, M. López-Novoa J, Martínez-Salgado C, J. López-Hernández F. Acute tubular necrosis: An old term in search for a new meaning within the evolving concept of acute kidney injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.nhtm.2015.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Tsuda H, Yamahara K, Otani K, Okumi M, Yazawa K, Kaimori JY, Taguchi A, Kangawa K, Ikeda T, Takahara S, Isaka Y. Transplantation of allogenic fetal membrane-derived mesenchymal stem cells protects against ischemia/reperfusion-induced acute kidney injury. Cell Transplant 2013; 23:889-99. [PMID: 23562186 DOI: 10.3727/096368913x665594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive therapeutic cell source for treating renal diseases. MSC administration has been shown to improve renal function, although the underlying mechanisms are not completely understood. We recently showed that allogenic fetal membrane-derived MSCs (FM-MSCs), which are available noninvasively in large amounts, had a renoprotective effect in an experimental glomerulonephritis model. Here we investigated whether allogenic FM-MSC administration could protect kidneys from ischemia/reperfusion (I/R) injury. Lewis rats were subjected to right nephrectomy and left renal I/R injury by clamping the left renal artery as an acute kidney injury (AKI) model. After declamping, FM-MSCs (5 × 10(5) cells) obtained from major histocompatibility complex (MHC)-mismatched ACI rats were intravenously administered. I/R-injured rats exhibited increased serum creatinine and BUN, whereas FM-MSC administration significantly ameliorated renal function. Histological analysis revealed that FM-MSC administration significantly suppressed tubular apoptosis and infiltration of macrophages and T-cells. Administration of FM-MSCs mainly homed into the lung, but increased serum IL-10 levels. Of interest is that renoprotective effects of FM-MSCs were abolished by using anti-IL-10 neutralization antibody, suggesting that IL-10 would be one of the candidate factors to protect rat kidney from I/R injury in this model. We concluded that allogenic FM-MSC transplantation is a potent therapeutic strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int 2011; 81:477-85. [PMID: 22157656 DOI: 10.1038/ki.2011.405] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute kidney injury increases mortality risk among those with established chronic kidney disease. In this study we used a propensity score-matched cohort method to retrospectively evaluate the risks of death and de novo chronic kidney disease after reversible, hospital-associated acute kidney injury among patients with normal pre-hospitalization kidney function. Of 30,207 discharged patients alive at 90 days, 1610 with reversible acute kidney injury that resolved within the 90 days were successfully matched across multiple parameters with 3652 control patients who had not experienced acute kidney injury. Median follow-up was 3.3 and 3.4 years (injured and control groups, respectively). In Cox proportional hazard models, the risk of death associated with reversible acute kidney injury was significant (hazard ratio 1.50); however, adjustment for the development of chronic kidney injury during follow-up attenuated this risk (hazard ratio 1.18). Reversible acute kidney injury was associated with a significant risk of de novo chronic kidney disease (hazard ratio 1.91). Thus, a resolved episode of hospital-associated acute kidney injury has important implications for the longitudinal surveillance of patients without preexisting, clinically evident kidney disease.
Collapse
|
11
|
Abstract
Until recently, no uniform standard existed for diagnosing and classifying acute renal failure. To clarify diagnosis, the Acute Dialysis Quality Initiative group stated its consensus on the need for a clear definition and classification system of renal dysfunction with measurable criteria. Today the term acute kidney injury has replaced the term acute renal failure, with an understanding that such injury is a common clinical problem in critically ill patients and typically is predictive of an increase in morbidity and mortality. A classification system, known as RIFLE (risk of injury, injury, failure, loss of function, and end-stage renal failure), includes specific goals for preventing acute kidney injury: adequate hydration, maintenance of renal perfusion, limiting exposure to nephrotoxins, drug protective strategies, and the use of renal replacement therapies that reduce renal injury.
Collapse
Affiliation(s)
- Susan Dirkes
- University of Michigan Health System, 6326 Sterling Dr, Newport, MI 48166, USA.
| |
Collapse
|
12
|
Urinary levels of regenerating islet-derived protein III β and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats. Kidney Int 2010; 79:518-28. [PMID: 20980976 DOI: 10.1038/ki.2010.439] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A key aspect for the clinical handling of acute kidney injury is an early diagnosis, for which a new generation of urine biomarkers is currently under development including kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin. A further diagnostic refinement is needed where one specific cause among several potentially nephrotoxic insults can be identified during the administration of multidrug therapies. In this study we identified increases in regenerating islet-derived protein III beta (reg IIIb) and gelsolin as potential differential urinary markers of gentamicin's nephrotoxicity. Indeed, urinary levels of both reg IIIb and gelsolin distinguish between the nephrotoxicity caused by gentamicin from that caused by cisplatin where these markers were not increased by the latter. Reg IIIb was found to be overexpressed in the kidneys of gentamicin-treated rats and excreted into the urine, whereas urinary gelsolin originated from the blood by glomerular filtration. Our results illustrate an etiological diagnosis of acute kidney injury through analysis of urine. Thus, our results raise the possibility of identifying the actual nephrotoxin in critically ill patients who are often treated with several nephrotoxic agents at the same time, thereby providing the potential for tailoring therapy to an individual patient, which is the aim of personalized medicine.
Collapse
|
13
|
Sub-nephrotoxic doses of gentamicin predispose animals to developing acute kidney injury and to excrete ganglioside M2 activator protein. Kidney Int 2010; 78:1006-15. [PMID: 20720524 DOI: 10.1038/ki.2010.267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied whether nephrotoxic drug administration sensitizes to acute renal failure (ARF) by administering a sub-nephrotoxic dose of gentamicin. This pre-treatment sensitized animals with no sign of renal injury to develop ARF when exposed to a second potential nephrotoxic drug, also given at sub-nephrotoxic doses that would be otherwise harmless to non-sensitized animals. We identified urinary ganglioside M2 activator protein (GM2AP) as a biomarker of an enhanced sensitivity to suffer ARF following sub-nephrotoxic treatment with gentamicin. Sub-nephrotoxic gentamicin did not alter renal GM2AP gene expression or protein levels, determined by reverse transcriptase-PCR, western blot, and immunostaining, nor was its serum level modified. The origin of increased GM2AP in the urine is thought to be a defective tubular handling of this protein as a consequence of gentamicin action. Hence, markers of acquired sensitivity may improve the prevention of ARF by enhancing our capacity to monitor for this condition, in a preemptive manner.
Collapse
|
14
|
Parikh CR, Lu JC, Coca SG, Devarajan P. Tubular proteinuria in acute kidney injury: a critical evaluation of current status and future promise. Ann Clin Biochem 2010; 47:301-12. [PMID: 20511371 DOI: 10.1258/acb.2010.010076] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The diagnosis and prognosis of acute kidney injury (AKI) by current clinical means is inadequate. Biomarkers of kidney injury that are easily measured and unaffected by physiological variables could revolutionize the management of AKI. Our objective was to systematically review the diagnostic and prognostic utility of urine and serum biomarkers of AKI in humans. We searched MEDLINE, PubMed and EMBASE databases (January 2000–August 2009) for biomarker studies that could be classified into the following categories: (a) confirmation of the diagnosis of established AKI, (b) early prediction of AKI, and (c) prognostication of AKI. We identified 54 manuscripts published since 2000 that met our inclusion and exclusion criteria. Urinary interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl- β-d-glucosaminidase (NAG) are potentially useful biomarkers for the diagnosis of established AKI. Urinary NGAL, IL-18, and liver-type fatty acid binding protein, and serum NGAL and cystatin C represent the most promising biomarkers for early prediction of AKI. Urinary cystatin C, α1-microglobulin, NAG and retinol-binding protein may be useful to predict severity and outcomes of AKI. In conclusion, we identified several studies of promising biomarkers for the diagnosis, prediction and prognostication of AKI. However, we note several limitations, including small sample sizes, inadequate gold standard, exclusion of patients with chronic kidney disease, incomplete statistical analyses, utilization of research-based assays and a paucity of studies examining prediction for clinical outcomes. Future studies will need to address these limitations in order for further progress to be made.
Collapse
Affiliation(s)
- Chirag R Parikh
- Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven
- Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Jonathan C Lu
- Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven
- Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Steven G Coca
- Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven
- Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Okumura AS, Rodrigues LE, Martinelli R. Pentoxifylline in ischemia-induced acute kidney injury in rats. Ren Fail 2010; 31:829-32. [PMID: 19925292 DOI: 10.3109/08860220903137509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ischemia is an important cause of acute kidney injury (AKI). Pentoxifylline has been shown to improve tissue oxygenation and endothelial function and inhibit proinflammatory cytokine production. The aim of this study was to evaluate a possible renal protective effect of pentoxifylline against ischemia by measuring mitochondrial respiratory metabolism as an index of cell damage. Rats were submitted to right nephrectomy. The left kidney was submitted to ischemia by clamping the renal artery for 45 minutes. Immediately after release of the clamp, 1 mL of a solution containing 20 mg of pentoxifylline/mL was injected intravenously, while a control group received 1 mL of normal saline intravenously. Five minutes after the injection, the left kidney was removed, homogenized, and subjected to refrigerated differential centrifugation. Mitochondrial respiratory metabolism was measured polarographically. The mitochondria isolated from the kidneys of saline-treated rats had an endogenous respiration of 9.20 +/- 1.0 etamol O(2)/mg protein/min compared to 8.9 +/- 1.4 etamol O(2)/mg protein/min in the pentoxifylline-treated rats (p > 0.05). When stimulated by sodium succinate, the respiratory metabolism increased in a similar fashion in both groups of animals: 17.9 +/- 2.3 and 18.1 +/- 2.1 etamol O(2)/mg protein/min in the untreated and pentoxifylline-treated groups, respectively (p > 0.05). In the present study, pentoxifylline was not found to exert any protective effect on the kidney. It is possible that at the time of pentoxifylline administration, the mitochondria had already been damaged by the process of ischemia, and its effect may have been insufficient to reverse cell damage.
Collapse
Affiliation(s)
- Alice S Okumura
- Renal Service, Federal University of Bahia, School of Medicine, Salvador, Bahia, Brazil
| | | | | |
Collapse
|
16
|
Zoccali C, Kramer A, Jager K. The databases: renal replacement therapy since 1989--the European Renal Association and European Dialysis and Transplant Association (ERA-EDTA). Clin J Am Soc Nephrol 2010; 4 Suppl 1:S18-22. [PMID: 19996000 DOI: 10.2215/cjn.05210709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic kidney disease is now considered a public health priority, and the prevalence of this disease is approximately 10% in both North American and European countries. Such a phenomenon raises concern about the future increased incidence of ESRD. A recent analysis in the European Renal Association-European Dialysis and Transplant Association Registry shows that the incidence rates in Northern European countries have stabilized at approximately 110 per million people, a phenomenon that is associated with a parallel stabilization in the incidence of ESRD caused by diabetes. Such a stabilization has occurred in the face of an increasing prevalence of diabetes and hypertension in the general population, suggesting that this improvement may be the result of better prevention. Genetic factors, competing risks with other diseases, and other medical factors explain only in part the variability in the incidence of renal replacement therapy in European countries. Health care financing priorities have an obvious influence on the outcome of ESRD. Nonmedical factors seem to be of importance at least equal to that of medical factors. In this respect, Dialysis Outcomes and Practice Patterns Study Europe has revealed relevant differences in clinical policies that are related to ESRD treatment among European countries.
Collapse
Affiliation(s)
- Carmine Zoccali
- Nephrology and Renal Transplantation Unit and Consiglio Nazionale delle Ricerche, Instituto di Biomedicina, Ospedali Riuniti, Reggio Cal, Italy.
| | | | | |
Collapse
|
17
|
Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T, Cheadle C, Racusen L, Rabb H. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol 2010; 298:F1472-83. [PMID: 20181666 DOI: 10.1152/ajprenal.00619.2009] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is being increasingly shown to be a risk factor for chronic kidney disease (CKD), but little is known about the possible mechanistic links. We hypothesized that analysis of the genomic signature in the repair stage after AKI would reveal pathways that could link AKI and CKD. Unilateral renal pedicle clamping for 45 min was performed in male C57BL/6J mice. Mice were euthanized at 3, 10, and 28 days after ischemia-reperfusion injury (IRI). Total RNA was isolated from kidney and analyzed using an Illumina mouse array. Among 24,600 tested genes, 242, 146, and 46 genes were upregulated at days 3, 10, and 28 after IRI, and 85, 35, and 0 genes were downregulated, respectively. Gene ontology analysis showed that gene expression changes were primarily related to immune and inflammatory pathways both early and late after AKI. The most highly upregulated genes late after AKI were hepatitis A virus cellular receptor 1 (Havcr1) and lipocalin 2 (Lcn2), which code for kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), respectively. This was unexpected since they are both primarily potential biomarkers of the early stage of AKI. Furthermore, increases observed in gene expression in amiloride binding protein 1, vascular cell adhesion molecule-1, and endothelin 1 could explain the salt-sensitive hypertension that can follow AKI. These data suggested that 1) persistent inflammation and immune responses late after AKI could contribute to the pathogenesis of CKD, 2) late upregulation of KIM-1 and NGAL could be a useful marker for sustained renal injury after AKI, and 3) hypertension-related gene changes could underlie mechanisms for persistent renal and vascular injury after AKI.
Collapse
Affiliation(s)
- Gang Jee Ko
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tögel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 2009; 18:475-85. [PMID: 18564903 DOI: 10.1089/scd.2008.0092] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem associated with high morbidity and mortality. Likely due to its complex pathophysiology, therapies with a single pharmacological agent have generally failed to improve outcomes. In contrast, stem cell-based interventions utilize these cells' ability to simultaneously target multiple pathophysiological components of AKI and thus represent a promising new tool for the treatment of AKI. The aims of the this study were to investigate the long-term outcome and safety of treatment with autologous and allogeneic mesenchymal stem cells (MSCs) after AKI and the role of vascular endothelial growth factor (VEGF) as one of the principal paracrine mediators of renoprotection of MSCs. MSC administration after AKI was not associated with adverse events and proved to be renoprotective in animals with severe renal failure. Identical doses of autologous MSC were more effective than allogeneic. At 3 months, MSCs were not engrafted in any tissues except in the bone marrow in 50% of animals given the highest allogeneic cell dose. There was no long-term fibrotic response in the kidneys attributable to MSC therapy, and animals with severe AKI were protected from development of fibrotic lesions after AKI. Furthermore, this study establishes VEGF as a critical factor mediating renal recovery. VEGF knockdown by small-interfering RNA reduced effectiveness of MSCs significantly and decreased survival. In summary, our results show that both autologous and allogeneic MSC are safe and effective in AKI, and importantly, reduce late renal fibrosis and loss of renal function in surviving animals and that VEGF is a critical factor in renoprotection by MSCs. Together, we posit that these data provide further justification for the conduct of clinical trails in which AKI is treated with MSC.
Collapse
Affiliation(s)
- Florian Tögel
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah 84148, USA
| | | | | | | | | | | |
Collapse
|
19
|
Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 2009; 53:961-73. [PMID: 19346042 DOI: 10.1053/j.ajkd.2008.11.034] [Citation(s) in RCA: 840] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/28/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is common in hospitalized patients. The impact of AKI on long-term outcomes is controversial. STUDY DESIGN Systematic review and meta-analysis. SETTING & PARTICIPANTS Persons with AKI. SELECTION CRITERIA FOR STUDIES MEDLINE and EMBASE databases were searched from 1985 through October 2007. Original studies describing outcomes of AKI for patients who survived hospital discharge were included. Studies were excluded from review when participants were followed up for less than 6 months. PREDICTOR AKI, defined as acute changes in serum creatinine level or acute need for renal replacement therapy. OUTCOMES Chronic kidney disease (CKD), cardiovascular disease, and mortality. RESULTS 48 studies that contained a total of 47,017 participants were reviewed; 15 studies reported long-term data for patients without AKI. The incidence rate of mortality was 8.9 deaths/100 person-years in survivors of AKI and 4.3 deaths/100 patient-years in survivors without AKI (rate ratio [RR], 2.59; 95% confidence interval, 1.97 to 3.42). AKI was associated independently with mortality risk in 6 of 6 studies that performed multivariate adjustment (adjusted RR, 1.6 to 3.9) and with myocardial infarction in 2 of 2 studies (RR, 2.05; 95% confidence interval, 1.61 to 2.61). The incidence rate of CKD after an episode of AKI was 7.8 events/100 patient-years, and the rate of end-stage renal disease was 4.9 events/100 patient-years. LIMITATIONS The relative risk for CKD and end-stage renal disease after AKI was unattainable because of lack of follow-up of appropriate controls without AKI. CONCLUSIONS The development of AKI, defined as acute changes in serum creatinine level, characterizes hospitalized patients at increased risk of long-term adverse outcomes.
Collapse
Affiliation(s)
- Steven G Coca
- Section of Nephrology, Yale University, West Haven, CT 06516, USA
| | | | | | | | | |
Collapse
|
20
|
Ponte B, Felipe C, Muriel A, Tenorio MT, Liano F. Long-term functional evolution after an acute kidney injury: a 10-year study. Nephrol Dial Transplant 2008; 23:3859-66. [DOI: 10.1093/ndt/gfn398] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Bouchard J, Weidemann C, Mehta RL. Renal replacement therapy in acute kidney injury: intermittent versus continuous? How much is enough? Adv Chronic Kidney Dis 2008; 15:235-47. [PMID: 18565475 DOI: 10.1053/j.ackd.2008.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Approximately 4% of all critically ill patients will require renal replacement therapy (RRT). Despite its potential reversibility, acute kidney injury has a significant impact on morbidity and mortality. Numerous studies have addressed the questions of modality choice and dose of RRT in the intensive care unit setting. There is no clear evidence that one renal replacement modality is superior to another. Two multicenter trials focusing on dialysis dose will probably be published in the next year, either confirming or invalidating the benefit of higher effluent rates. Another key aspect in the treatment of acute kidney injury is the consequence of RRT on long-term renal function. Although cohort studies have shown that continuous RRT shortens dialysis-dependence compared with intermittent hemodialysis, randomized trials and meta-analyses do not support these findings. Several unanswered questions, such as the timing of initiation and cessation of RRT, the modification of dialysis parameters over the course of acute kidney injury and the influence of fluid status need to be addressed in future trials in order to improve outcomes related to this condition.
Collapse
|
22
|
|
23
|
Ronco C, Kellum JA, Bellomo R, House AA. Potential interventions in sepsis-related acute kidney injury. Clin J Am Soc Nephrol 2008; 3:531-44. [PMID: 18235149 DOI: 10.2215/cjn.03830907] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sepsis is an important cause of morbidity and mortality. Acute kidney injury often complicates sepsis, leading to greater complexity, cost of care, and worsening prognosis. In recent years, a consensus definition of acute kidney injury has been developed, facilitating research into the pathophysiology and epidemiology of this disorder. New and emerging biomarkers to recognize kidney injury before functional abnormalities are manifest may allow early recognition and facilitate prevention or treatment. Furthermore, advances in the clinical management of sepsis may have secondary benefits with respect to renal outcomes. Existing and hybrid extracorporeal therapies are being investigated not only as means to replace lost kidney function but also to modulate the immune response to sepsis. For those who have more advanced forms of kidney injury, strategies to promote renal recovery are being sought to minimize the long-term consequences of impaired kidney function. This review provides an update on the current state of the science and a glimpse toward the future of intervention in sepsis-related acute kidney injury.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Nephrology, St. Bortolo Hospital, International Renal Research Institute Vicenza, Vicenza, Italy
| | | | | | | |
Collapse
|
24
|
|
25
|
Schetz M. The kidney in the critically ill. Acta Clin Belg 2007; 62:195-207. [PMID: 17849690 DOI: 10.1179/acb.2007.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Acute kidney injury (AKI) is a common and serious complication in the intensive care setting. It seldom occurs in isolation, but is mostly part of a multiple organ dysfunction syndrome. The pathogenesis is frequently multifactorial, with sepsis contributing to 50% of the cases.The development of AKI in critically-ill patients is "bad news": patients with AKI have a high morbidity and mortality. In addition, AKI, even in its mildest from, is not only a marker of illness severity but appears to be independently associated with mortality. Prevention of AKI is therefore a major goal to improve outcome of critically-ill patients. Treatment of established AKI is largely supportive. The optimal modality for renal replacement therapy in critically-ill patients still remains a matter of debate). The majority of survivors recover renal function.
Collapse
Affiliation(s)
- M Schetz
- Department of Intensive Care Medicine, University Hospital Gasthuisberg, Leuven, Belgium.
| |
Collapse
|