1
|
Cantaluppi V, Medica D, Quercia AD, Dellepiane S, Figliolini F, Virzì GM, Brocca A, Quaglia M, Marengo M, Olivieri C, Senzolo M, Garzotto F, Della Corte F, Castellano G, Gesualdo L, Camussi G, Ronco C. Perfluorocarbon solutions limit tubular epithelial cell injury and promote CD133+ kidney progenitor differentiation: potential use in renal assist devices for sepsis-associated acute kidney injury and multiple organ failure. Nephrol Dial Transplant 2019; 33:1110-1121. [PMID: 29267971 DOI: 10.1093/ndt/gfx328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/23/2017] [Indexed: 01/16/2023] Open
Abstract
Background The renal assist device (RAD) is a blood purification system containing viable renal tubular epithelial cells (TECs) that has been proposed for the treatment of acute kidney injury (AKI) and multiple organ failure. Perfluorocarbons (PFCs) are oxygen carriers used for organ preservation in transplantation. The aim of this study was to investigate the effect of PFCs on hypoxia- and sepsis-induced TEC injury and on renal CD133+ progenitor differentiation in a microenvironment similar to the RAD. Methods TECs were seeded in a polysulphone hollow fibre under hypoxia or cultured with plasma from 10 patients with sepsis-associated AKI in the presence or absence of PFCs and were tested for cytotoxicity (XTT assay), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling assay, caspases, enzyme-linked immunosorbent assay, Fas/Fas Ligand pathway activation), mitochondrial activity, cell polarity [transepithelial electrical resistance (TEER)] and adenosine triphosphate production. The effect of PFCs on proliferation and differentiation of human CD133+ progenitors was also studied. Results In the presence of PFCs, TECs seeded into the polysulphone hollow fibre showed increased viability and expression of insulin-like growth factor 1, hepatocyte growth factor and macrophage-stimulating protein. Plasma from septic patients induced TEC apoptosis, disruption of oxidative metabolism, alteration of cell polarity and albumin uptake, down-regulation of the tight junction protein ZO-1 and the endocytic receptor megalin on the TEC surface. These detrimental effects were significantly reduced by PFCs. Moreover, PFCs induced CD133+ renal progenitor cell proliferation and differentiation towards an epithelial/tubular-like phenotype. Conclusions PFCs improved the viability and metabolic function of TECs seeded within a polysulphone hollow fibre and subjected to plasma from septic AKI patients. Additionally, PFCs promoted differentiation towards a tubular/epithelial phenotype of CD133+ renal progenitor cells.
Collapse
Affiliation(s)
- Vincenzo Cantaluppi
- Nephrology, Dialysis and Kidney Transplantation Unit, Maggiore della Carità Hospital-University of Eastern Piedmont, Novara, Italy.,Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Davide Medica
- Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Alessandro Domenico Quercia
- Nephrology, Dialysis and Kidney Transplantation Unit, Maggiore della Carità Hospital-University of Eastern Piedmont, Novara, Italy.,Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Sergio Dellepiane
- Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Federico Figliolini
- Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Grazia Maria Virzì
- Nephrology, Dialysis and Kidney Transplantation Unit, San Bortolo Hospital and International Renal Research Institute Vicenza (IRRIV), Vicenza, Italy
| | - Alessandra Brocca
- Nephrology, Dialysis and Kidney Transplantation Unit, San Bortolo Hospital and International Renal Research Institute Vicenza (IRRIV), Vicenza, Italy
| | - Marco Quaglia
- Nephrology, Dialysis and Kidney Transplantation Unit, Maggiore della Carità Hospital-University of Eastern Piedmont, Novara, Italy
| | | | - Carlo Olivieri
- Intensive Care Unit, Maggiore della Carità Hospital-University of Eastern Piedmont, Novara, Italy
| | - Mara Senzolo
- Nephrology, Dialysis and Kidney Transplantation Unit, San Bortolo Hospital and International Renal Research Institute Vicenza (IRRIV), Vicenza, Italy
| | - Francesco Garzotto
- Nephrology, Dialysis and Kidney Transplantation Unit, San Bortolo Hospital and International Renal Research Institute Vicenza (IRRIV), Vicenza, Italy
| | - Francesco Della Corte
- Intensive Care Unit, Maggiore della Carità Hospital-University of Eastern Piedmont, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giovanni Camussi
- Department of Medical Sciences and Center for Experimental Medical Research (CeRMS), Nephrology, Dialysis and Kidney Transplantation Center, University of Torino, Torino, Italy
| | - Claudio Ronco
- Nephrology, Dialysis and Kidney Transplantation Unit, San Bortolo Hospital and International Renal Research Institute Vicenza (IRRIV), Vicenza, Italy
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW This article gives an overview of important new advances relating to kidney bioengineering. RECENT FINDINGS Directed differentiation studies have shown that proximal tubules, distal tubules, podocytes, collecting ducts, interstitium and endothelial cells can be generated from patient-derived stem cells using standardized protocols. One caveat to the interpretation of these studies is that the physiological characteristics of differentiated cells remain to be defined. Another important area of progress is scaffolding. Both decellularized organs and polymeric materials are being used as platforms for three-dimensional growth of kidney tissue, and key distinctions between these approaches are discussed. SUMMARY In the past 3 years, it has become clear that building kidney tissue is feasible. The laboratory-grown kidney is an attainable goal if efforts are focused on refining directed differentiation procedures to optimize cell function and on developing scaffolding strategies that ensure physiological function at the tissue level.
Collapse
|
3
|
Di Lullo L, Bellasi A, Russo D, Cozzolino M, Ronco C. Cardiorenal acute kidney injury: Epidemiology, presentation, causes, pathophysiology and treatment. Int J Cardiol 2017; 227:143-150. [DOI: 10.1016/j.ijcard.2016.11.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
4
|
Kordinas V, Tsirpanlis G, Nicolaou C, Zoga M, Ioannidis A, Ioannidou V, Bersimis S, Petrihou C, Savva L, Legakis NJ, Chatzipanagiotou S. Is there a connection between inflammation, telomerase activity and the transcriptional status of telomerase reverse transcriptase in renal failure? Cell Mol Biol Lett 2016. [PMID: 26204404 DOI: 10.1515/cmble-2015-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomerase is involved in the elongation of telomeres. It remains active in very few types of cell in mature organisms. One such cell type is the lymphocytes. In this study, we investigated the activity and expression of telomerase in lymphocytes from renal failure patients and compared it to that for normal controls. Inflammation status was determined at the same time. The enzyme activity was measured using PCR-ELISA with peripheral blood mononuclear cells (PBMCs) from three groups: 53 healthy individuals, 50 patients with chronic kidney disease (CKD) and 50 dialysis patients. In the same cell populations, the expression of the reverse transcriptase of the human telomerase gene (hTERT) was measured via real-time PCR. The inflammationstatus of these individuals was determined by calculating the interleukin 6 (IL-6), IL-10, C-reactive protein (CRP) and tumor necrosis factor alpha (TNF-a) serum concentrations via ELISA. The lowest levels of telomerase activity were detected in CKD, and this group had the highest IL-6 and CRP values and the lowest hTERT expression. The dialysis group showed significant differences in comparison to the normal subjects and to the CKD patients. Further studies are warranted in order to explore the way inflammation influences telomerase activity and hTERT expression.
Collapse
|
5
|
Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med 2015; 9:649-72. [PMID: 25372080 DOI: 10.2217/rme.14.35] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases. Various cell therapies have reached advanced clinical trial phases with potential marketing approvals in the near future, many of which are based on mesenchymal stem cells. Advances in pluripotent stem cell research hold great promise for regenerative medicine. The information presented in this review is based on the analysis of the cell therapy collection detailed in LifeMap Discovery(®) (LifeMap Sciences Inc., USA) the database of embryonic development, stem cell research and regenerative medicine.
Collapse
|
6
|
Human umbilical mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis. Am J Med Sci 2014; 346:486-93. [PMID: 23514668 DOI: 10.1097/maj.0b013e3182831777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have suggested the potential of mesenchymal stem cells (MSCs) to repair damaged kidney diseases. However, the effect of human umbilical cord MSCs (HuMSCs) on the progression of focal segmental glomerulosclerosis (FSGS) remains poorly understood. Adriamycin-induced nephropathy is a rodent model of chronic kidney disease that has been studied extensively and has enabled a greater understanding of the processes underlying the progression of FSGS. This study aimed to investigate the role of HuMSCs on the progression of kidney disease using a model of adriamycin-induced nephropathy. Human MSCs were labeled with 5-bromo-2'-deoxyuridine to track their localization to the kidneys after infusion. Clinical parameters and histology suggested amelioration of FSGS in MSC-treated animals at 12 weeks, especially in those that received repeated doses. These results were associated with reduced serum interleukin (IL)-6 and tumor necrosis factor-α, transforming growth factor-β levels, connective tissue growth factor messenger RNA expression and upregulated serum IL-10 levels. In short, this experiment found that HuMSCs improved kidney fibrosis and modulated the inflammatory response, suggesting that xenogenic transplantation of HuMSCs is a novel approach for improving the progression of FSGS and may be a promising therapeutic intervention in the future.
Collapse
|
7
|
Human mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure. Clin Sci (Lond) 2013; 125:199-210. [PMID: 23480877 DOI: 10.1042/cs20120644] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Therapeutic approaches for CKD (chronic kidney disease) have been able to reduce proteinuria, but not diminish the disease progression. We have demonstrated beneficial effects by injection of BM (bone marrow)-derived MSCs (mesenchymal stem cells) from healthy donors in a rat model with CKD. However, it has recently been reported that BM-MSCs derived from uraemic patients failed to confer functional protection in a similar model. This suggests that autologous BM-MSCs are not suitable for the treatment of CKD. In the present study, we have explored the potential of MSCs derived from adipose tissue (AD-MSCs) as an alternative source of MSCs for the treatment of CKD. We have isolated AD-MSCs and evaluated their effect on the progression of CKD. Adult male SD (Sprague-Dawley) rats subjected to 5/6 NPX (nephrectomy) received a single intravenous infusion of 0.5×10(6) AD-MSCs or MSC culture medium alone. The therapeutic effect was evaluated by plasma creatinine measurement, structural analysis and angiogenic/epitheliogenic protein expression. AD-MSCs were detected in kidney tissues from NPX animals. This group had a significant reduction in plasma creatinine levels and a lower expression of damage markers ED-1 and α-SMA (α-smooth muscle actin) (P<0.05). In addition, treated rats exhibited a higher level of epitheliogenic [Pax-2 and BMP-7 (bone morphogenetic protein 7)] and angiogenic [VEGF (vascular endothelial growth factor)] proteins. The expression of these biomarkers of regeneration was significantly related to the improvement in renal function. Although many aspects of the cell therapy for CKD remain to be investigated, we provide evidence that AD-MSCs, a less invasive and highly available source of MSCs, exert an important therapeutic effect in this pathology.
Collapse
|
8
|
Takahashi H, Sawada K, Kakuta T, Suga T, Hanai K, Kanai G, Fujimura S, Sanechika N, Terachi T, Fukagawa M, Saito A. Evaluation of bioartificial renal tubule device prepared with human renal proximal tubular epithelial cells cultured in serum-free medium. J Artif Organs 2013; 16:368-75. [DOI: 10.1007/s10047-013-0710-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
9
|
Abstract
Aim of this paper is to provide a brief introduction on the biomaterials used in urology, discussing issues of biocompatibility and biomaterials available for use. Information will moreover be provided on basic elements of Tissue engineering and Regenerative medicine, rapidly advancing technologies that could finally shift in the next future from the laboratory to clinical practice, with special interest to possible urological applications.
Collapse
|
10
|
Novel techniques and innovation in blood purification: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 2013; 83:359-71. [DOI: 10.1038/ki.2012.450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Yevzlin AS, Humes HD. Cell therapy, advanced materials, and new approaches to acute kidney injury. Hosp Pract (1995) 2012; 37:137-43. [PMID: 20877182 DOI: 10.3810/hp.2009.12.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute renal failure (ARF) is a common clinical syndrome characterized by an abrupt deterioration in kidney function, resulting in abnormalities in volume-regulatory, metabolic-regulatory, excretory, and endocrine functions. Despite decades of improvements in the provision of intensive care, and specifically in the provision of renal replacement therapy, the morbidity and mortality associated with acute kidney injury (AKI) remain extremely high. This article highlights novel cell therapies, advanced materials, and approaches to AKI with the aim of illuminating a potential path for future basic, translational, and clinical research using these novel modalities.
Collapse
Affiliation(s)
- Alexander S Yevzlin
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53713, USA.
| | | |
Collapse
|
12
|
Transcription of the Tumor Suppressor Genes p53 and RB in Lymphocytes from Patients with Chronic Kidney Disease: Evidence of Molecular Senescence? Int J Nephrol 2012; 2012:154397. [PMID: 23050148 PMCID: PMC3461626 DOI: 10.1155/2012/154397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Patients suffering from renal failure exhibit an impaired immune system function. We wanted to investigate the transcription of the tumor suppressor genes p53 and RB to record, if these cells could be stimulated in vitro in order to divide, after the addition of antigenic and inflammatory factors. This expression was measured by real-time PCR in peripheral blood mononuclear cells (PBMCs) from three different groups: ten healthy individuals, ten patients with chronic kidney disease (CKD), and ten dialysis patients with end stage renal disease (ESRD). The transcription rate of these genes was also measured after the cultivation of PBMCs under four different conditions: just with the culture medium, with lipopolysaccharide (LPS), with C-reactive protein (CRP), and with lipoxin A(4) (LXA(4))-LPS. Our results show that in most cases after the cultivation with additives, the transcription levels were higher in dialysis patients compared to those of the other two groups. Our findings serve as indications of cellular senescence on a molecular level, while it seems that these cells are less easily stimulated in vitro in order to duplicate.
Collapse
|
13
|
Saito A, Sawada K, Fujimura S, Suzuki H, Hirukawa T, Tatsumi R, Kanai G, Takahashi H, Miyakogawa T, Sanechika N, Fukagawa M, Kakuta T. Evaluation of bioartificial renal tubule device prepared with lifespan-extended human renal proximal tubular epithelial cells. Nephrol Dial Transplant 2012; 27:3091-9. [DOI: 10.1093/ndt/gfr755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Chuasuwan A, Kellum JA. Cardio-Renal Syndrome Type 3: Epidemiology, Pathophysiology, and Treatment. Semin Nephrol 2012; 32:31-9. [DOI: 10.1016/j.semnephrol.2011.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Mesenchymal stem cell injection ameliorates chronic renal failure in a rat model. Clin Sci (Lond) 2011; 121:489-99. [PMID: 21675962 DOI: 10.1042/cs20110108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CKD (chronic kidney disease) has become a public health problem. The therapeutic approaches have been able to reduce proteinuria, but have not been successful in limiting disease progression. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of MSC (mesenchymal stem cells) on the progression of CKD and the expression of molecular biomarkers associated with regenerative effects. Adult male Sprague-Dawley rats subjected to 5/6 NPX (nephrectomy) received a single intravenous infusion of 0.5×106 MSC or culture medium. A sham group subjected to the same injection was used as the control. Rats were killed 5 weeks after MSC infusion. Dye tracking of MSC was followed by immunofluorescence analysis. Kidney function was evaluated using plasma creatinine. Structural damage was evaluated by H&E (haematoxylin and eosin) staining, ED-1 abundance (macrophages) and interstitial α-SMA (α-smooth muscle actin). Repairing processes were evaluated by functional and structural analyses and angiogenic/epitheliogenic protein expression. MSC could be detected in kidney tissues from NPX animals treated with intravenous cell infusion. This group presented a marked reduction in plasma creatinine levels and damage markers ED-1 and α-SMA (P<0.05). In addition, treated rats exhibited a significant induction in epitheliogenic [Pax-2, bFGF (basic fibroblast growth factor) and BMP-7 (bone morphogenetic protein-7)] and angiogenic [VEGF (vascular endothelial growth factor) and Tie-2] proteins. The expression of these biomarkers of regeneration was significantly related to the increase in renal function. Many aspects of the cell therapy in CKD remain to be investigated in more detail: for example, its safety, low cost and the possible need for repeated cell injections over time. Beyond the undeniable importance of these issues, what still needs to be clarified is whether MSC administration has a real effect on the treatment of this pathology. It is precisely to this point that the present study aims to contribute.
Collapse
|
16
|
Abstract
The term 'regenerative medicine' encompasses strategies for restoring or renewing tissue or organ function by: (i) in vivo tissue repair by in-growth of host cells into an acellular natural or synthetic biomaterial, (ii) implantation of tissue 'engineered'in vitro by seeding cultured cells into a biomaterial scaffold, and (iii) therapeutic cloning and stem cell-based tissue regeneration. In this article, we review recent developments underpinning the emerging science of regenerative medicine and critically assess where successful implementation of novel regenerative medicine approaches into urology practice might genuinely transform the quality of life of affected individuals. We advocate the need for an evidence-based approach supported by strong science and clinical objectivity.
Collapse
Affiliation(s)
- Felix Wezel
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
17
|
Sanechika N, Sawada K, Usui Y, Hanai K, Kakuta T, Suzuki H, Kanai G, Fujimura S, Yokoyama TA, Fukagawa M, Terachi T, Saito A. Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells. Nephrol Dial Transplant 2011; 26:2761-9. [PMID: 21421594 DOI: 10.1093/ndt/gfr066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The bioartificial renal tubule device is a cell therapy system for renal failure. The major obstacle in the development of the bioartificial renal tubule device is the obtainment of a large number of viable renal tubule cells to seed on the inner surface of hollow fibers. Although our previous studies had used a transformed cell line, they may be dangerous for clinical uses. Therefore, different approaches to amplify renal proximal tubular epithelial cells (RPTEC) in culture without oncogenes, vectors and carcinogens have been required. METHODS The limitation of the replicative lifespan of human RPTEC, which is ∼12 population doublings (PDs), was extended by invalidating messenger RNA of cell cycle-related genes with antisense oligonucleotide or small interfering RNA (siRNA). RESULTS Periodic transfection of siRNA to a tumor suppressor p53 or a cyclin-dependent kinase inhibitor p16(INK4a) extended the lifespan by 33 and 63 PDs, respectively, in 3 months of culture. The siRNA-mediated lifespan extension was controllable because cell division ceased within 2 weeks after the transfection was discontinued. Expressions of γ-glutamyltransferase 1 and glucose transporter 1 were recovered in siRNA-transfected RPTEC cultured on porous membranes. Bioartificial renal tubule devices (0.8 m(2)) constructed with these cells showed reabsorption of water (122.3 ± 4.2 mL/30 min), sodium (18.1 ± 0.7 mEq/30 min) and glucose (121.7 ± 4.4 mg/30 min) after 1 week of circulation. Furthermore, β2-microglobulin and pentosidine were metabolized by RPTEC in mini-devices (65 cm(2)) within 48 h of circulation. CONCLUSIONS These approaches enabled us to yield a high enough number of RPTEC for construction of bioartificial renal tubule devices repeatedly. Lifespan-extended RPTEC could recover their specific characteristics by culturing on porous membranes, and bioartificial renal tubule devices constructed with these cells showed good performances of reabsorption and metabolism. SUMMARY A large number of human renal tubular cells required for construction of the bioartificial renal tubule device were prepared by extending the lifespan of the primary cells by invalidating mRNA of cell cycle-related genes. Constructed bioartificial renal tubule devices with lifespan-extended cells showed good performances of in vitro examination of reabsorption and metabolism. Requiring no oncogenes, vectors or cell cloning, the RNAi-mediated lifespan extension can help advance tissue-replacement therapy as well as basic research.
Collapse
Affiliation(s)
- Noriyuki Sanechika
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun J, Wang C, Zhu B, Larsen S, Wu J, Zhao W. Construction of an Erythropoietin-Expressing Bioartificial Renal Tubule Assist Device. Ren Fail 2011; 33:54-60. [DOI: 10.3109/0886022x.2010.536605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Basu RK, Wheeler DS. Approaches to the Management of Acute Kidney Injury in Children. RECENT PATENTS ON BIOMARKERS 2011; 1:49-59. [PMID: 23538877 PMCID: PMC3607497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Acute kidney injury (AKI) causes increased morbidity in critically ill children and damage to the kidney, a central mediator of homeostasis in the body, affects survival. The incidence of AKI in pediatrics is significant and despite alarming data, therapeutic interventions have failed to effect a meaningful difference in outcomes. In this review, we will discuss the epidemiology of AKI in pediatrics, treatment strategies attempted to date, experimental therapies targeting molecular patterns associated with AKI, and highlight the needed direction of AKI research and management. Prospective trials in pediatrics are needed to test the validity of diagnostic tools, to identify the point of most efficacious intervention, and to underscore the therapies that can be effective in the different downstream effects of AKI.
Collapse
Affiliation(s)
- Rajit K Basu
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center
| | | |
Collapse
|
20
|
Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, Ying JY, Zink D. Achievements and challenges in bioartificial kidney development. FIBROGENESIS & TISSUE REPAIR 2010; 3:14. [PMID: 20698955 PMCID: PMC2925816 DOI: 10.1186/1755-1536-3-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|