1
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Convergent evolution and mimicry of protein linear motifs in host–pathogen interactions. Curr Opin Struct Biol 2015; 32:91-101. [DOI: 10.1016/j.sbi.2015.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 12/21/2022]
|
3
|
Cheatle Jarvela AM, Hinman VF. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 2015; 6:3. [PMID: 25685316 PMCID: PMC4327956 DOI: 10.1186/2041-9139-6-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
The form that an animal takes during development is directed by gene regulatory networks (GRNs). Developmental GRNs interpret maternally deposited molecules and externally supplied signals to direct cell-fate decisions, which ultimately leads to the arrangements of organs and tissues in the organism. Genetically encoded modifications to these networks have generated the wide range of metazoan diversity that exists today. Most studies of GRN evolution focus on changes to cis-regulatory DNA, and it was historically theorized that changes to the transcription factors that bind to these cis-regulatory modules (CRMs) contribute to this process only rarely. A growing body of evidence suggests that changes to the coding regions of transcription factors play a much larger role in the evolution of developmental gene regulatory networks than originally imagined. Just as cis-regulatory changes make use of modular binding site composition and tissue-specific modules to avoid pleiotropy, transcription factor coding regions also predominantly evolve in ways that limit the context of functional effects. Here, we review the recent works that have led to this unexpected change in the field of Evolution and Development (Evo-Devo) and consider the implications these studies have had on our understanding of the evolution of developmental processes.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
4
|
Origins of context-dependent gene repression by capicua. PLoS Genet 2015; 11:e1004902. [PMID: 25569482 PMCID: PMC4287436 DOI: 10.1371/journal.pgen.1004902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/17/2014] [Indexed: 12/23/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling pathways induce multiple biological responses, often by regulating the expression of downstream genes. The HMG-box protein Capicua (Cic) is a transcriptional repressor that is downregulated in response to RTK signaling, thereby enabling RTK-dependent induction of Cic targets. In both Drosophila and mammals, Cic is expressed as two isoforms, long (Cic-L) and short (Cic-S), whose functional significance and mechanism of action are not well understood. Here we show that Drosophila Cic relies on the Groucho (Gro) corepressor during its function in the early embryo, but not during other stages of development. This Gro-dependent mechanism requires a short peptide motif, unique to Cic-S and designated N2, which is distinct from other previously defined Gro-interacting motifs and functions as an autonomous, transferable repressor element. Unexpectedly, our data indicate that the N2 motif is an evolutionary innovation that originated within dipteran insects, as the Cic-S isoform evolved from an ancestral Cic-L-type form. Accordingly, the Cic-L isoform lacking the N2 motif is completely inactive in early Drosophila embryos, indicating that the N2 motif endowed Cic-S with a novel Gro-dependent activity that is obligatory at this stage. We suggest that Cic-S and Gro coregulatory functions have facilitated the evolution of the complex transcriptional network regulated by Torso RTK signaling in modern fly embryos. Notably, our results also imply that mammalian Cic proteins are unlikely to act via Gro and that their Cic-S isoform must have evolved independently of fly Cic-S. Thus, Cic proteins employ distinct repressor mechanisms that are associated with discrete structural changes in the evolutionary history of this protein family. Understanding the evolution of developmental regulatory mechanisms is a central challenge of biology. Here we uncover a newly evolved mechanism of transcriptional repression by Capicua (Cic), a conserved sensor of Receptor Tyrosine Kinase (RTK) signaling. In Drosophila, Cic patterns the central regions of the embryo by repressing genes induced by Torso RTK signaling at the poles. We show that Cic performs this function by recruiting the Groucho (Gro) corepressor and that this mechanism is an evolutionary innovation of dipteran insects. Indeed, we find that recruitment of Gro depends on a short motif of Cic (N2) specific to dipterans. Strikingly, moreover, the form of Cic that existed before the origin of dipterans is completely inactive in fly embryos, whereas the equivalent form carrying N2 displays significant function. This suggests that evolution of the N2 motif caused a fundamental change in Cic repressor activity, which we propose has enabled the complex roles of Cic, Gro and Torso signaling in fly embryonic patterning. In contrast, Cic functions independently of Gro in other Drosophila tissues and probably also in mammals, where Cic lacks the N2 sequence. Thus, our results illustrate the structural and evolutionary origins of essential functional variations within a highly conserved family of developmental regulators.
Collapse
|
5
|
Rhee DY, Cho DY, Zhai B, Slattery M, Ma L, Mintseris J, Wong CY, White KP, Celniker SE, Przytycka TM, Gygi SP, Obar RA, Artavanis-Tsakonas S. Transcription factor networks in Drosophila melanogaster. Cell Rep 2014; 8:2031-2043. [PMID: 25242320 DOI: 10.1016/j.celrep.2014.08.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/09/2014] [Accepted: 08/16/2014] [Indexed: 11/15/2022] Open
Abstract
Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.
Collapse
Affiliation(s)
- David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Y Wong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Teresa M Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Obar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Spyros Artavanis-Tsakonas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Biogen Idec, Inc., Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
7
|
Boube M, Hudry B, Immarigeon C, Carrier Y, Bernat-Fabre S, Merabet S, Graba Y, Bourbon HM, Cribbs DL. Drosophila melanogaster Hox transcription factors access the RNA polymerase II machinery through direct homeodomain binding to a conserved motif of mediator subunit Med19. PLoS Genet 2014; 10:e1004303. [PMID: 24786462 PMCID: PMC4006704 DOI: 10.1371/journal.pgen.1004303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded “co-factor” that acts together with Hox proteins through their homeodomains in regulated developmental transcription. Mutations of Hox developmental genes in the fruit fly Drosophila melanogaster may provoke spectacular changes in form: transformations of one body part into another, or loss of organs. This attribute identifies them as important developmental genes. Insect and vertebrate Hox proteins contain highly related homeodomain motifs used to bind to regulatory DNA and influence expression of developmental target genes. This occurs at the level of transcription of target gene DNA to messenger RNA by RNA polymerase II and its associated protein machinery (>50 proteins). How Hox homeodomain proteins induce fine-tuned transcription remains an open question. We provide an initial response, finding that Hox proteins also use their homeodomains to bind one machinery protein, Mediator complex subunit 19 (Med19) through a Med19 sequence that is highly conserved in animal phyla. Med19 mutants isolated in this work (the first animal mutants) show that Med19 assists Hox protein functions. Further, they indicate that homeodomain binding to the Med19 motif is required for normal expression of a Hox target gene. Our work provides new clues for understanding how the specific transcriptional inputs of the highly conserved Hox class of transcription factors are integrated at the level of the whole transcription machinery.
Collapse
Affiliation(s)
- Muriel Boube
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| | - Bruno Hudry
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Clément Immarigeon
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Sandra Bernat-Fabre
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Samir Merabet
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Yacine Graba
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| | - David L. Cribbs
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| |
Collapse
|
8
|
The Tbx20 homolog Midline represses wingless in conjunction with Groucho during the maintenance of segment polarity. Dev Biol 2012; 369:319-29. [PMID: 22814213 DOI: 10.1016/j.ydbio.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
The regulation of the segment polarity gene wingless is essential for the correct patterning of the Drosophila ectoderm. We have previously shown that the asymmetric activation of wingless downstream of Hedghog-signaling depends on the T-box transcription factors, midline and H15. Hedgehog activates wingless anterior to the Hedgehog domain. midline/H15 are responsible in part for repressing wingless in cells posterior to the Hedgehog expressing cells. Here, we show that Midline binds the Groucho co-repressor directly via the engrailed homology-1 domain and requires an intact engrailed-homology-1 domain to repress wingless. In contrast, the regulation of Serrate, a second target of midline repression, is not dependent on the engrailed-homology-1 domain. Furthermore, we identify a midline responsive region of the wingless cis-regulatory region and show that Midline binds to sequences within this region. Mutating these sequences in transgenic reporter constructs results in ectopic reporter expression in the midline-expression domain, consistent with wingless being a direct target of Midline repression.
Collapse
|
9
|
Jiménez-Delgado S, Pascual-Anaya J, Garcia-Fernàndez J. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:266-75. [PMID: 19651705 DOI: 10.1093/bfgp/elp029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery that most regulatory genes were conserved among animals from distant phyla challenged the ideas that gene duplication and divergence of homologous coding sequences were the basis for major morphological changes in metazoan evolution. In recent years, however, the interest for the roles, conservation and changes of non-coding sequences grew-up in parallel with genome sequencing projects. Presently, many independent studies are highlighting the importance that subtle changes in cis-regulatory regions had in the evolution of morphology trough the Animal Kingdom. Here we will show and discuss some of these studies, and underscore the future of cis-Evo-Devo research. Nevertheless, we would also explore how gene duplication, which includes duplication of regulatory regions, may have been critical for spatial or temporal co-option of new regulatory networks, causing the deployment of new transcriptome scenarios, and how these induced morphological changes were critical for the evolution of new forms. Forty years after Susumu Ohno famous sentence 'natural selection merely modifies, while redundancy creates', we suggest the alternative: 'natural selection modifies, while redundancy of cis-regulatory elements innovates', and propose the Duplication-Degeneration-Innovation model to explain the increased evolvability of duplicated cis-regulatory regions. Paradoxically, making regulation simpler by subfunctionalization paved the path for future complexity or, in other words, 'to make it simple to make it complex'.
Collapse
Affiliation(s)
- Senda Jiménez-Delgado
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|