1
|
Xie Y, Tan Y, Wen X, Deng W, Yu J, Li M, Meng F, Wang X, Zhu D. The Expression and Function of Notch Involved in Ovarian Development and Fecundity in Basilepta melanopus. INSECTS 2024; 15:292. [PMID: 38667422 PMCID: PMC11050577 DOI: 10.3390/insects15040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Basilepta melanopus is a pest that severely affects oil tea plants, and the Notch signaling pathway plays a significant role in the early development of insect ovaries. In this study, we explored the function of the notch gene within the Notch signaling pathway in the reproductive system of B. melanopus. The functional domains and expression patterns of Bmnotch were analyzed. Bmnotch contains 45 epidermal growth factor-like (EGF-like) domains, one negative regulatory region, one NODP domain and one repeat-containing domain superfamily. The qPCR reveals heightened expression in early developmental stages and specific tissues like the head and ovaries. The RNA interference (RNAi)-based suppression of notch decreased its expression by 52.1%, exhibiting heightened sensitivity to dsNotch at lower concentrations. Phenotypic and mating experiments have demonstrated that dsNotch significantly impairs ovarian development, leading to reduced mating frequencies and egg production. This decline underscores the Notch pathway's crucial role in fecundity. The findings advocate for RNAi-based, Notch-targeted pest control as an effective and sustainable strategy for managing B. melanopus populations, signifying a significant advancement in forest pest control endeavors.
Collapse
Affiliation(s)
- Yifei Xie
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Yifan Tan
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xuanye Wen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110031, China;
| | - Wan Deng
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Jinxiu Yu
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Mi Li
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Fanhui Meng
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xiudan Wang
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Daohong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| |
Collapse
|
2
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Fernandez-Nicolas A, Ventos-Alfonso A, Kamsoi O, Clark-Hachtel C, Tomoyasu Y, Belles X. Broad complex and wing development in cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103798. [PMID: 35662625 DOI: 10.1016/j.ibmb.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In hemimetabolan insects, the transcription factor Broad complex (Br-C) promotes wing growth and development during the nymphal period. We wondered whether Br-C could trigger the initiation of wing development, using the cockroach Blattella germanica as a model. We show that first instar nymphs have their unique identity of these three thoracic segments specified. During embryogenesis, the expression of Br-C and some wing-related genes show two matching waves. The first takes place before the formation of the germ band, which might be involved in the establishment of various developmental fields including a potential "wing field", and the second wave around organogenesis, possibly involved in the initiation of wing development. However, the expression of Br-C in early embryogenesis concentrates in the developing central nervous system, thus not co-localizing with the expression of the typical wing-related gene vestigial, which is expressed at the edge of the thoracic and abdominal segments. This suggests that Br-C is not specifically involved in the establishment of a potential "wing field" in early embryogenesis. Moreover, maternal RNAi for Br-C depletes the first wave of Br-C expression but does not affect the early expression of wing-related genes. As maternal Br-C RNAi did not deplete the second expression wave of Br-C, we could not evaluate if Br-C is involved in the initiation of wing development. Alternatively, using nymphal RNAi of Br-C and Sex combs reduced (Scr), we show that Br-C contributes to the formation of ectopic wing structures that develop in the prothorax when Scr is depleted. The gene most clearly influenced by Br-C RNAi is nubbin (nub), which, in nymphs is crucial for wing growth. Together, these results suggest that Br-C does not specifically contribute to the establishment of the "wing field", but it does seem important later, in the initiation of wing development, enhancing the expression of wing-related genes, especially nub. This supports the hypothesis previously proposed by the authors, whereby Br-C might have facilitated the evolution of holometaboly. However, there is no doubt that other factors have also contributed to this evolution.
Collapse
Affiliation(s)
| | - Alba Ventos-Alfonso
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Orathai Kamsoi
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Courtney Clark-Hachtel
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Yoshinori Tomoyasu
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
Tidswell ORA, Benton MA, Akam M. The neuroblast timer gene nubbin exhibits functional redundancy with gap genes to regulate segment identity in Tribolium. Development 2021; 148:271199. [PMID: 34351412 PMCID: PMC8406537 DOI: 10.1242/dev.199719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/23/2021] [Indexed: 12/05/2022]
Abstract
The neuroblast timer genes hunchback, Krüppel, nubbin and castor are expressed in temporal sequence in neural stem cells, and in corresponding spatial sequence along the Drosophila blastoderm. As canonical gap genes, hunchback and Krüppel play a crucial role in insect segmentation, but the roles of nubbin and castor in this process remain ambiguous. We have investigated the expression and functions of nubbin and castor during segmentation in the beetle Tribolium. We show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone, and that Tc-nubbin regulates segment identity redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Simultaneous knockdown of Tc-nubbin, Tc-giant and Tc-knirps results in the formation of ectopic legs on abdominal segments. This homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila. Summary:nubbin and the gap genes knirps and giant redundantly repress Krüppel expression during segmentation. Simultaneous knockdown of all three genes causes ectopic Krüppel expression and loss of abdominal segment identity.
Collapse
Affiliation(s)
| | - Matthew A Benton
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Rahman SR, Terranova T, Tian L, Hines HM. Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee. Genome Biol Evol 2021; 13:6244266. [PMID: 33881508 PMCID: PMC8220310 DOI: 10.1093/gbe/evab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/24/2022] Open
Abstract
A major goal of evolutionary genetics and evo-devo is to understand how changes in genotype manifest as changes in phenotype. Bumble bees display remarkable color pattern diversity while converging onto numerous regional Müllerian mimicry patterns, thus enabling exploration of the genetic mechanisms underlying convergent phenotypic evolution. In western North America, multiple bumble bee species converge onto local mimicry patterns through parallel shifts of midabdominal segments from red to black. It was previously demonstrated that a Hox gene, Abd-B, is the key regulator of the phenotypic switch in one of these species, Bombus melanopygus, however, the mechanism by which Abd-B regulates color differentiation remains unclear. Using tissue/stage-specific transcriptomic analysis followed by qRT–PCR validation, this study reveals a suite of genes potentially involved downstream of Abd-B during color pattern differentiation. The data support differential genes expression of not only the first switch gene Abd-B, but also an intermediate developmental gene nubbin, and a whole suite of downstream melanin and redox genes that together reinforce the observed eumelanin (black)-pheomelanin (red) ratios. These include potential genes involved in the production of insect pheomelanins, a pigment until recently not thought to occur in insects and thus lacking known regulatory enzymes. The results enhance understanding of pigmentation gene networks involved in bumble bee color pattern development and diversification, while providing insights into how upstream regulators such as Hox genes interact with downstream morphogenic players to facilitate this adaptive phenotypic radiation.
Collapse
Affiliation(s)
- Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Tatiana Terranova
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Tian
- Department of Entomology, China Agricultural University, Beijing, China
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
A hemipteran insect reveals new genetic mechanisms and evolutionary insights into tracheal system development. Proc Natl Acad Sci U S A 2020; 117:4252-4261. [PMID: 32041884 DOI: 10.1073/pnas.1908975117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity in the organization of the tracheal system is one of the drivers of insect evolutionary success; however, the genetic mechanisms responsible are yet to be elucidated. Here, we highlight the advantages of utilizing hemimetabolous insects, such as the milkweed bug Oncopeltus fasciatus, in which the final adult tracheal patterning can be directly inferred by examining its blueprint in embryos. By reporting the expression patterns, functions, and Hox gene regulation of trachealess (trh), ventral veinless (vvl), and cut (ct), key genes involved in tracheal development, this study provides important insights. First, Hox genes function as activators, modifiers, and suppressors of trh expression, which in turn results in a difference between the thoracic and abdominal tracheal organization. Second, spiracle morphogenesis requires the input of both trh and ct, where ct is positively regulated by trh As Hox genes regulate trh, we can now mechanistically explain the previous observations of their effects on spiracle formation. Third, the default state of vvl expression in the thorax, in the absence of Hox gene expression, features three lateral cell clusters connected to ducts. Fourth, the exocrine scent glands express vvl and are regulated by Hox genes. These results extend previous findings [Sánchez-Higueras et al., 2014], suggesting that the exocrine glands, similar to the endocrine, develop from the same primordia that give rise to the trachea. The presence of such versatile primordia in the miracrustacean ancestor could account for the similar gene networks found in the glandular and respiratory organs of both insects and crustaceans.
Collapse
|
8
|
Chipman AD. Oncopeltus fasciatus
as an evo-devo research organism. Genesis 2017; 55. [DOI: 10.1002/dvg.23020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology; Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus; Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
9
|
Kojima T. Developmental mechanism of the tarsus in insect legs. CURRENT OPINION IN INSECT SCIENCE 2017; 19:36-42. [PMID: 28521941 DOI: 10.1016/j.cois.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 06/07/2023]
Abstract
Insects show a tremendous morphological variety and have been a subject of studying morphological evolution. In legs, the tarsus is especially variable in the number of subsegments (tarsal segments) and their proportion unlike other leg segments. Recent studies in Drosophila melanogaster have revealed details of the tarsal development: regionalization of the tarsal region through integration of regulatory network and its growth, determination of the joint-forming region in each segment through strict regulation of Notch activity, changes in tissue morphology through regulation of RhoGTPases regulators and localized cell death, and finally, the morphogenetic mechanism of the ball-and-socket joint between tarsal segments. The substantial knowledge of the tarsal development makes it a suitable model for studying mechanisms of morphological evolution and diversification.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
10
|
Abstract
Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification. First, a set of dorsally derived outgrowths evolved along a number of body segments including the first thoracic segment (T1). Homeotic genes were subsequently co-opted to suppress growth of some dorsal flaps in the thorax and abdomen. In T1 this suppression was accomplished by Sex combs reduced, that when experimentally removed, results in an ectopic T1 flap similar to prothoracic winglets present in fossil hemipteroids and other early insects. Global gene-expression differences in ectopic T1 vs. T2/T3 wings suggest that the transition from flaps to wings required ventrally originating cells, homologous with those in ancestral arthropod gill flaps/epipods, to migrate dorsally and fuse with the dorsal flap tissue thereby bringing new functional gene networks; these presumably enabled the T2/T3 wing's increased size and functionality. Third, "fused" wings became both the wing blade and surrounding regions of the dorsal thorax cuticle, providing tissue for subsequent modifications including wing folding and the fit of folded wings. Finally, Ultrabithorax was co-opted to uncouple the morphology of T2 and T3 wings and to act as a general modifier of hindwings, which in turn governed the subsequent diversification of lineage-specific wing forms.
Collapse
|
11
|
Salvador R, Príncipi D, Berretta M, Fernández P, Paniego N, Sciocco-Cap A, Hopp E. Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:219. [PMID: 25473064 PMCID: PMC5634044 DOI: 10.1093/jisesa/ieu081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/15/2013] [Indexed: 06/04/2023]
Abstract
Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information.
Collapse
Affiliation(s)
- Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Darío Príncipi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Marcelo Berretta
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Paula Fernández
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| | - Alicia Sciocco-Cap
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686 Hurlingham, Argentina
| | - Esteban Hopp
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA, Castelar), N. Repetto y Los Reseros, 1686. Hurlingham, Argentina
| |
Collapse
|
12
|
Pannebakker BA, Trivedi U, Blaxter ML, Watt R, Shuker DM. The transcriptomic basis of oviposition behaviour in the parasitoid wasp Nasonia vitripennis. PLoS One 2013; 8:e68608. [PMID: 23894324 PMCID: PMC3716692 DOI: 10.1371/journal.pone.0068608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/29/2013] [Indexed: 01/26/2023] Open
Abstract
Linking behavioural phenotypes to their underlying genotypes is crucial for uncovering the mechanisms that underpin behaviour and for understanding the origins and maintenance of genetic variation in behaviour. Recently, interest has begun to focus on the transcriptome as a route for identifying genes and gene pathways associated with behaviour. For many behavioural traits studied at the phenotypic level, we have little or no idea of where to start searching for "candidate" genes: the transcriptome provides such a starting point. Here we consider transcriptomic changes associated with oviposition in the parasitoid wasp Nasonia vitripennis. Oviposition is a key behaviour for parasitoids, as females are faced with a variety of decisions that will impact offspring fitness. These include choosing between hosts of differing quality, as well as making decisions regarding clutch size and offspring sex ratio. We compared the whole-body transcriptomes of resting or ovipositing female Nasonia using a "DeepSAGE" gene expression approach on the Illumina sequencing platform. We identified 332 tags that were significantly differentially expressed between the two treatments, with 77% of the changes associated with greater expression in resting females. Oviposition therefore appears to focus gene expression away from a number of physiological processes, with gene ontologies suggesting that aspects of metabolism may be down-regulated during egg-laying. Nine of the most abundant differentially expressed tags showed greater expression in ovipositing females though, including the genes purity-of-essence (associated with behavioural phenotypes in Drosophila) and glucose dehydrogenase (GLD). The GLD protein has been implicated in sperm storage and release in Drosophila and so provides a possible candidate for the control of sex allocation by female Nasonia during oviposition. Oviposition in Nasonia therefore clearly modifies the transcriptome, providing a starting point for the genetic dissection of oviposition.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Li J, Wang XP, Wang MQ, Ma WH, Hua HX. Advances in the use of the RNA interference technique in Hemiptera. INSECT SCIENCE 2013; 20:31-9. [PMID: 23955823 DOI: 10.1111/j.1744-7917.2012.01550.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) suppresses the expression of target genes by post-transcriptional regulation. Because double-stranded RNA (dsRNA) mediated gene silencing is a conserved mechanism in many eukaryotes, RNAi has become a valuable tool for unveiling gene function in many model insects. Recent research has also shown that RNAi can also be effective in the downregulation of target genes in Hemiptera. In this review, we discuss the use of the RNAi technique in gene functional analysis in hemipterans, highlighting the methods of dsRNA uptake by these insects and discuss the knock-down efficiency of these techniques. Although the RNAi technique has disadvantages, our primary goal here is to determine whether it can be exploited further in the discovery of new gene functions, and as a pest control strategy, in some important Hemipteran pests.
Collapse
Affiliation(s)
- Jie Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
14
|
Paim RMM, Araujo RN, Lehane MJ, Gontijo NF, Pereira MH. Application of RNA interference in triatomine (Hemiptera: Reduviidae) studies. INSECT SCIENCE 2013; 20:40-52. [PMID: 23955824 DOI: 10.1111/j.1744-7917.2012.01540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triatomines (Hemiptera: Reduviidae) are obligate hematophagous insects. They are of medical importance because they are vectors of Trypanosoma cruzi, the causative agent of Chagas disease in the Americas. In recent years, the RNA interference (RNAi) technology has emerged as a practical and useful alternative means of studying gene function in insects, including triatomine bugs. RNAi research in triatomines is still in its early stages, several issues still need to be elucidated, including the description of the molecules involved in the RNAi machinery and aspects related to phenotype evaluation and persistence of the knockdown in different tissues and organs. This review considers recent applications of RNAi to triatomine research, describing the major methods that have been applied during the knockdown process such as the double-stranded RNA delivery mechanism (injection, microinjection, or ingestion) and the phenotype characterization (mRNA and target protein levels) in studies conducted with the intent to provide greater insights into the biology of these insects. In addition to the characterization of insect biomolecules, some with biopharmacological potential, RNAi may provide a new view of the interaction between triatomine and trypanosomatids, enabling the development of new measures for vector control and transmission of the parasite.
Collapse
Affiliation(s)
- Rafaela M M Paim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antonio Carlos 6627, Pampulha, CEP 30270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
15
|
Zeng V, Extavour CG. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012. [PMID: 23180770 PMCID: PMC3504982 DOI: 10.1093/database/bas048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL:asgard.rc.fas.harvard.edu
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
16
|
Nakao H. Anterior and posterior centers jointly regulate Bombyx embryo body segmentation. Dev Biol 2012; 371:293-301. [DOI: 10.1016/j.ydbio.2012.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
|
17
|
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-GENES GENOMES GENETICS 2012; 2:235-48. [PMID: 22384402 PMCID: PMC3284331 DOI: 10.1534/g3.111.001537] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023]
Abstract
Serial homologs are similar structures that develop at different positions within a body plan. These structures share some, but not all, aspects of developmental patterning, and their evolution is thought to be constrained by shared, pleiotropic gene functions. Here we describe the functions of 17 developmental genes during metamorphic development of the legs in the red flour beetle, Tribolium castaneum. This study provides informative comparisons between appendage development in Drosophila melanogaster and T. castaneum, between embryonic and adult development in T. castaneum, and between the development of serially homologous appendages. The leg gap genes Distal-less and dachshund are conserved in function. Notch signaling, the zinc-finger transcription factors related to odd-skipped, and bric-à-brac have conserved functions in promoting joint development. homothorax knockdown alters the identity of proximal leg segments but does not reduce growth. Lim1 is required for intermediate leg development but not distal tarsus and pretarsus development as in D. melanogaster. Development of the tarsus requires decapentaplegic, rotund, spineless, abrupt, and bric-à-brac and the EGF ligand encoded by Keren. Metathoracic legs of T. castaneum have four tarsomeres, whereas other legs have five. Patterns of gene activity in the tarsus suggest that patterning in the middle of the tarsal region, not the proximal- or distal-most areas, is responsible for this difference in segment number. Through comparisons with other recent studies of T. castaneum appendage development, we test hypotheses for the modularity or interdependence of development during evolution of serial homologs.
Collapse
|
18
|
Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes. Dev Biol 2012; 361:450-62. [DOI: 10.1016/j.ydbio.2011.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
19
|
Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. Genetics 2011; 190:639-54. [PMID: 22135350 DOI: 10.1534/genetics.111.134296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.
Collapse
|
20
|
Turchyn N, Chesebro J, Hrycaj S, Couso JP, Popadić A. Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev Biol 2011; 357:83-95. [PMID: 21708143 DOI: 10.1016/j.ydbio.2011.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
Abstract
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia-tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa-trochanter and femur-tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.
Collapse
Affiliation(s)
- Nataliya Turchyn
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
21
|
García-Solache M, Jaeger J, Akam M. A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Dev Biol 2010; 344:306-18. [DOI: 10.1016/j.ydbio.2010.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 02/04/2023]
|
22
|
Evolution of insect development: to the hemimetabolous paradigm. Curr Opin Genet Dev 2010; 20:355-61. [PMID: 20462751 DOI: 10.1016/j.gde.2010.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/23/2022]
Abstract
Mechanisms of insect development have been extensively studied in Drosophila melanogaster, a holometabolous insect. However, recent studies on other insects have gradually revealed that there exist new developmental paradigms. In this review, we focus on the new hemimetabolous paradigm. We highlight how hemimetabolous short-germ or intermediate-germ embryos establish the anterior/posterior (A/P) pattern and the importance of dynamic cell movement during germband formation. In hemimetabolous insects, orthodenticle, encoding a homeodomain-containing transcription factor, and wingless/Wnt signaling could play crucial roles in the A/P pattern formation. We also discuss recent evidence suggesting that insect developmental modes may have evolved by heterochronic shifts, while retaining certain universal metazoan features.
Collapse
|
23
|
Hrycaj S, Chesebro J, Popadić A. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 2010; 341:324-34. [PMID: 20171962 DOI: 10.1016/j.ydbio.2010.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.
Collapse
Affiliation(s)
- Steven Hrycaj
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|