1
|
Wu Y, Zhao X, Xiang Y, Guo M, Li C. Evolution of mitogen-activated protein kinase family and their immune function in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104586. [PMID: 36347398 DOI: 10.1016/j.dci.2022.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The mitogen-activated protein kinase family plays an important role in cell differentiation, growth, proliferation, and survival. However, the current research on the mitogen-activated protein kinase (MAPK) family in invertebrates is limited to the individual gene, and the analysis has not been conducted at the family level. In the present study, echinoderm MAPK family was identified by genomic screening, and five members, including three ERK subfamily members, one c-Jun N-terminal kinase (JNK) subfamily, and one p38-MAPK member were detected. Phylogenetic analysis showed that three MAPK subfamilies were separated into three separated clusters, and ERK subfamily appeared earlier than the other two subfamilies. Synteny analysis revealed that the p38 subfamily might be derived from the continuous gene duplication events of MAPK14 subfamily in invertebrates, which displayed genome expansion via gene duplication in vertebrates. The role of MAPK family in echinoderm immune defense was determined by investigating the expression profiles of MAPKs in Vibrio splendidus-challenged Apostichopus japonicus and LPS-exposed coelomocytes. The result showed that five MAPK members displayed induced expression profiles both in vitro and in vivo, and the peak expression was detected at different time points. Our study provides new insights into the evolutionary history of the MAPK family and show the similar immune function among MAPK members.
Collapse
Affiliation(s)
- Yuanlan Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yangxi Xiang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China.
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China.
| |
Collapse
|
2
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
3
|
Somorjai IML, Ehebauer MT, Escrivà H, Garcia-Fernàndez J. JNK Mediates Differentiation, Cell Polarity and Apoptosis During Amphioxus Development by Regulating Actin Cytoskeleton Dynamics and ERK Signalling. Front Cell Dev Biol 2021; 9:749806. [PMID: 34778260 PMCID: PMC8586503 DOI: 10.3389/fcell.2021.749806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a multi-functional protein involved in a diverse array of context-dependent processes, including apoptosis, cell cycle regulation, adhesion, and differentiation. It is integral to several signalling cascades, notably downstream of non-canonical Wnt and mitogen activated protein kinase (MAPK) signalling pathways. As such, it is a key regulator of cellular behaviour and patterning during embryonic development across the animal kingdom. The cephalochordate amphioxus is an invertebrate chordate model system straddling the invertebrate to vertebrate transition and is thus ideally suited for comparative studies of morphogenesis. However, next to nothing is known about JNK signalling or cellular processes in this lineage. Pharmacological inhibition of JNK signalling using SP600125 during embryonic development arrests gastrula invagination and causes convergence extension-like defects in axial elongation, particularly of the notochord. Pharynx formation and anterior oral mesoderm derivatives like the preoral pit are also affected. This is accompanied by tissue-specific transcriptional changes, including reduced expression of six3/6 and wnt2 in the notochord, and ectopic wnt11 in neurulating embryos treated at late gastrula stages. Cellular delamination results in accumulation of cells in the gut cavity and a dorsal fin-like protrusion, followed by secondary Caspase-3-mediated apoptosis of polarity-deficient cells, a phenotype only partly rescued by co-culture with the pan-Caspase inhibitor Z-VAD-fmk. Ectopic activation of extracellular signal regulated kinase (ERK) signalling in the neighbours of extruded notochord and neural cells, possibly due to altered adhesive and tensile properties, as well as defects in cellular migration, may explain some phenotypes caused by JNK inhibition. Overall, this study supports conserved functions of JNK signalling in mediating the complex balance between cell survival, apoptosis, differentiation, and cell fate specification during cephalochordate morphogenesis.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- School of Biology, University of St Andrews, St Andrews, United Kingdom.,Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France.,Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain
| | | | - Hector Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain.,Institut de Biomedicina, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Xin Tao
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Anlong Xu
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
- Center of Scientific Research, Beijing University of Chinese Medicine, Beijing 100029, People’s Republic of China
| |
Collapse
|
5
|
|
6
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
7
|
Ferrier DEK, Martinez P. Evolutionary Developmental Genomics: at the 2008 meeting of the European Society for Evolutionary Developmental Biology. Genomics 2009; 95:247-9. [PMID: 19615437 DOI: 10.1016/j.ygeno.2009.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 07/07/2009] [Indexed: 11/28/2022]
|
8
|
Garcia-Fernàndez J, Benito-Gutiérrez E. It's a long way from amphioxus: descendants of the earliest chordate. Bioessays 2009; 31:665-75. [PMID: 19408244 DOI: 10.1002/bies.200800110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The origin of chordates and the consequent genesis of vertebrates were major events in natural history. The amphioxus (lancelet) is now recognised as the closest extant relative to the stem chordate and is the only living invertebrate that retains a vertebrate-like development and body plan through its lifespan, despite more than 500 million years of independent evolution from the stem vertebrate. The inspiring data coming from its recently sequenced genome confirms that amphioxus has a prototypical chordate genome with respect to gene content and structure, and even chromosomal organisation. Pushed by joint efforts of amphioxus researchers, amphioxus is now entering a new era, namely its maturation as a laboratory model, through the availability of a large amount of molecular data and the advent of experimental manipulation of the embryo. These two facts may well serve to illuminate the hidden secrets of the genetic changes that generated, among other vertebrates, ourselves.
Collapse
Affiliation(s)
- Jordi Garcia-Fernàndez
- Departament de Genètica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain.
| | | |
Collapse
|