1
|
Kelliher L, Yoeli-Bik R, Schweizer L, Lengyel E. Molecular changes driving low-grade serous ovarian cancer and implications for treatment. Int J Gynecol Cancer 2024; 34:1630-1638. [PMID: 38950921 PMCID: PMC11503204 DOI: 10.1136/ijgc-2024-005305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Low-grade serous ovarian cancer was previously thought to be a subtype of high-grade serous ovarian cancer, but it is now recognized as a distinct disease with unique clinical and molecular behaviors. The disease may arise de novo or develop from a serous borderline ovarian tumor. Although it is more indolent than high-grade serous ovarian cancer, most patients have advanced metastatic disease at diagnosis and recurrence is common. Recurrent low-grade serous ovarian cancer is often resistant to standard platinum-taxane chemotherapy, making it difficult to treat with the options currently available. New targeted therapies are needed, but their development is contingent on a deeper understanding of the specific biology of the disease. The known molecular drivers of low-grade tumors are strong hormone receptor expression, mutations in the mitogen-activated protein kinase (MAPK) pathway (KRAS, BRAF, and NRAS), and in genes related to the MAPK pathway (NF1/2, EIF1AX, and ERBB2). However, MAPK inhibitors have shown only modest clinical responses. Based on the discovery of CDKN2A mutations in low-grade serous ovarian cancer, cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are now being tested in clinical trials in combination with hormone therapy. Additional mutations seen in a smaller population of low-grade tumors include USP9X, ARID1A, and PIK3CA, but no specific therapies targeting them have been tested clinically. This review summarizes the clinical, pathologic, and molecular features of low-grade serous ovarian cancer as they are now understood and introduces potential therapeutic targets and new avenues for research.
Collapse
Affiliation(s)
- Lucy Kelliher
- Section of Gynecologic Oncology, University of Chicago Department of Obstetrics and Gynecology, Chicago, Illinois, USA
| | - Roni Yoeli-Bik
- Section of Gynecologic Oncology, University of Chicago Department of Obstetrics and Gynecology, Chicago, Illinois, USA
| | - Lisa Schweizer
- Max Planck Institute of Biochemistry Research Department Proteomics and Signal Transduction, Martinsried, Bayern, Germany
| | - Ernst Lengyel
- Section of Gynecologic Oncology, University of Chicago Department of Obstetrics and Gynecology, Chicago, Illinois, USA
| |
Collapse
|
2
|
Sadlecki P, Walentowicz-Sadlecka M. Molecular landscape of borderline ovarian tumours: A systematic review. Open Med (Wars) 2024; 19:20240976. [PMID: 38859878 PMCID: PMC11163159 DOI: 10.1515/med-2024-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pawel Sadlecki
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| |
Collapse
|
3
|
CD40 ligand induces RIP1-dependent, necroptosis-like cell death in low-grade serous but not serous borderline ovarian tumor cells. Cell Death Dis 2015; 6:e1864. [PMID: 26313915 PMCID: PMC4558516 DOI: 10.1038/cddis.2015.229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023]
Abstract
Ovarian high-grade serous carcinomas (HGSCs) and invasive low-grade serous carcinomas (LGSCs) are considered to be distinct entities. In particular, LGSCs are thought to arise from non-invasive serous borderline ovarian tumors (SBOTs) and show poor responsiveness to conventional chemotherapy. The pro-apoptotic effects of CD40 ligand (CD40L) have been demonstrated in HGSC, though the underlying mechanisms are not fully understood. Conversely, the therapeutic potential of the CD40L-CD40 system has yet to be evaluated in LGSC. We now show that CD40 protein is focally expressed on tumor cells in two of five primary LGSCs compared with no expression in eight primary SBOTs. Treatment with CD40L or agonistic CD40 antibody decreased the viability of LGSC-derived MPSC1 and VOA1312 cells, but not SBOT3.1 cells. Small interfering RNA (siRNA) targeting CD40 was used to show that it is required for these reductions in cell viability. CD40L treatment increased cleaved caspase-3 levels in MPSC1 cells though, surprisingly, neither pan-caspase inhibitor nor caspase-3 siRNA reversed or even attenuated CD40L-induced cell death. In addition, CD40-induced cell death was not affected by knockdown of the mitochondrial proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG). Interestingly, CD40L-induced cell death was blocked by necrostatin-1, an inhibitor of receptor-interacting protein 1 (RIP1), and attenuated by inhibitors of RIP3 (GSK'872) or MLKL (mixed lineage kinase domain-like; necrosulfonamide). Our results indicate that the upregulation of CD40 may be relatively common in LGSC and that CD40 activation induces RIP1-dependent, necroptosis-like cell death in LGSC cells.
Collapse
|
4
|
Cheng JC, Auersperg N, Leung PCK. TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells. PLoS One 2012; 7:e42436. [PMID: 22905131 PMCID: PMC3419689 DOI: 10.1371/journal.pone.0042436] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/09/2012] [Indexed: 12/02/2022] Open
Abstract
Apoptosis in ovarian surface epithelial (OSE) cells is induced by transforming growth factor-beta (TGF-β). However, high-grade serous ovarian carcinomas (HGC) are refractory to the inhibitory functions of TGF-β; their invasiveness is up-regulated by TGF-β through epithelial-mesenchymal transition (EMT) activation. Serous borderline ovarian tumors (SBOT) have been recognized as distinct entities that give rise to invasive low-grade serous carcinomas (LGC), which have a relatively poor prognosis and are unrelated to HGC. While it is not fully understood how TGF-β plays disparate roles in OSE cells and its malignant derivative HGC, its role in SBOT and LGC remains unknown. Here we demonstrate the effects of TGF-β on cultured SBOT3.1 and LGC-derived MPSC1 cells, which express TGF-β type I and type II receptors. TGF-β treatment induced the invasiveness of SBOT3.1 cells but reduced the invasiveness of MPSC1 cells. The analysis of apoptosis, which was assessed by cleaved caspase-3 and trypan blue exclusion assay, revealed TGF-β-induced apoptosis in MPSC1, but not SBOT3.1 cells. The pro-apoptotic effect of TGF-β on LGC cells was confirmed in another immortalized LGC cell line ILGC. TGF-β treatment led to the activation of Smad3 but not Smad2. The specific TβRI inhibitor SB431542 and TβRI siRNA abolished the SBOT3.1 invasion induced by TGF-β, and it prevented TGF-β-induced apoptosis in MPSC1 cells. In SBOT3.1 cells, TGF-β down-regulated E-cadherin and concurrently up-regulated N-cadherin. TGF-β up-regulated the expression of the transcriptional repressors of E-cadherin, Snail, Slug, Twist and ZEB1. In contrast, co-treatment with SB431542 and TβRI depletion by siRNA abolished the effects of TGF-β on the relative cadherin expression levels and that of Snail, Slug, Twist and ZEB1 as well. This study demonstrates dual TGF-β functions: the induction of SBOT cell invasion by EMT activation and apoptosis promotion in LGC cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelly Auersperg
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. K. Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
5
|
Marchini S, Poynor E, Barakat RR, Clivio L, Cinquini M, Fruscio R, Porcu L, Bussani C, D'Incalci M, Erba E, Romano M, Cattoretti G, Katsaros D, Koff A, Luzzatto L. The zinc finger gene ZIC2 has features of an oncogene and its overexpression correlates strongly with the clinical course of epithelial ovarian cancer. Clin Cancer Res 2012; 18:4313-24. [PMID: 22733541 DOI: 10.1158/1078-0432.ccr-12-0037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Epithelial ovarian tumors (EOT) are among the most lethal of malignancies in women. We have previously identified ZIC2 as expressed at a higher level in samples of a malignant form (MAL) of EOT than in samples of a form with low malignant potential (LMP). We have now investigated the role of ZIC2 in driving tumor growth and its association with clinical outcomes. EXPERIMENTAL DESIGN ZIC2 expression levels were analyzed in two independent tumor tissue collections of LMP and MAL. In vitro experiments aimed to test the role of ZIC2 as a transforming gene. Cox models were used to correlate ZIC2 expression with clinical endpoints. RESULTS ZIC2 expression was about 40-fold in terms of mRNA and about 17-fold in terms of protein in MAL (n = 193) versus LMP (n = 39) tumors. ZIC2 mRNA levels were high in MAL cell lines but undetectable in LMP cell lines. Overexpression of ZIC2 was localized to the nucleus. ZIC2 overexpression increases the growth rate and foci formation of NIH3T3 cells and stimulates anchorage-independent colony formation; downregulation of ZIC2 decreases the growth rate of MAL cell lines. Zinc finger domains 1 and 2 are required for transforming activity. In stage I MAL, ZIC2 expression was significantly associated with overall survival in both univariate (P = 0.046) and multivariate model (P = 0.049). CONCLUSIONS ZIC2, a transcription factor related to the sonic hedgehog pathway, is a strong discriminant between MAL and LMP tumors: it may be a major determinant of outcome of EOTs.
Collapse
Affiliation(s)
- Sergio Marchini
- Department of Oncology, Mario Negri Gynecological Oncology Group, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
EGF-induced EMT and invasiveness in serous borderline ovarian tumor cells: a possible step in the transition to low-grade serous carcinoma cells? PLoS One 2012; 7:e34071. [PMID: 22479527 PMCID: PMC3316602 DOI: 10.1371/journal.pone.0034071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/21/2012] [Indexed: 01/08/2023] Open
Abstract
In high-grade ovarian cancer cultures, it has been shown that epidermal growth factor (EGF) induces cell invasion by activating an epithelial-mesenchymal transition (EMT). However, the effect of EGF on serous borderline ovarian tumors (SBOT) and low-grade serous carcinomas (LGC) cell invasion remains unknown. Here, we show that EGF receptor (EGFR) was expressed, that EGF treatment increased cell migration and invasion in two cultured SBOT cell lines, SBOT3.1 and SV40 large T antigen-infected SBOT cells (SBOT4-LT), and in two cultured LGC cell lines, MPSC1 and SV40 LT/ST-immortalized LGC cells (ILGC). However, EGF induced down-regulation of E-cadherin and concurrent up-regulation of N-cadherin in SBOT cells but not in LGC cells. In SBOT cells, the expression of the transcriptional repressors of E-cadherin, Snail, Slug and ZEB1 were increased by EGF treatment. Treatment with EGF led to the activation of the downstream ERK1/2 and PI3K/Akt. The MEK1 inhibitor PD98059 diminished the EGF-induced cadherin switch and the up-regulation of Snail, Slug and ZEB1 and the EGF-mediated increase in SBOT cell migration and invasion. The PI3K inhibitor LY294002 had similar effects, but it could not block the EGF-induced up-regulation of N-cadherin and ZEB1. This study demonstrates that EGF induces SBOT cell migration and invasion by activating EMT, which involves the activation of the ERK1/2 and PI3K/Akt pathways and, subsequently, Snail, Slug and ZEB1 expression. Moreover, our results suggest that there are EMT-independent mechanisms that mediate the EGF-induced LGC cell migration and invasion.
Collapse
|
7
|
Güngör T, Kaba M, Başer E, Yalçın H, Bayramoğlu H, Beşli M. Advanced stage micropapillary serous borderline ovarian tumor in a postmenopausal woman: a case report. J Turk Ger Gynecol Assoc 2012; 13:208-11. [PMID: 24592040 DOI: 10.5152/jtgga.2012.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/08/2012] [Indexed: 11/22/2022] Open
Abstract
Serous borderline ovarian tumors (SBOT) generally occur in young women, present at early stages and are associated with an excellent prognosis. However, there are rare subtypes of SBOT which may exhibit a more aggressive course. In contrast with other types of SBOT, the micropapillary variant SBOT (SBOT-MP) tends to present at advanced stages. Herein, we present a rare case of a SBOT-MP that occurred in a 66-year-old woman, who had tumoral involvement on bilateral ovaries, sigmoid serosa and a positive peritoneal cytology. The currently recommended treatment options for these cases are also discussed.
Collapse
Affiliation(s)
- Tayfun Güngör
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Metin Kaba
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Eralp Başer
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Hakan Yalçın
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Hatice Bayramoğlu
- Department of Pathology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Mustafa Beşli
- Department of Gynecologic Oncology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
8
|
King ER, Zu Z, Tsang YTM, Deavers MT, Malpica A, Mok SC, Gershenson DM, Wong KK. The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma. Gynecol Oncol 2011; 123:13-8. [PMID: 21726895 DOI: 10.1016/j.ygyno.2011.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To validate the overexpression of insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) in low-grade serous ovarian carcinoma (SOC), and to investigate whether the IGF-1 pathway is a potential therapeutic target for low-grade SOC. METHODS Gene expression profiling was performed on serous borderline ovarian tumors (SBOTs) and low-grade SOC, and overexpression of IGF-1 in low-grade SOC was validated by RT-PCR and immunohistochemistry. The effect of exogenous IGF-1 on cell proliferation was determined in cell lines by cell proliferation assays, cell migration assays, and Western blot. Signaling pathways downstream of IGF-1 and the effects of the AKT inhibitor MK-2206 were investigated by Western blot analysis and by generating IGF-1R short hairpin RNA stable knockdown cell lines. Low- and high-grade cell lines were treated with the dual IGF-1R- and insulin receptor-directed tyrosine kinase inhibitor OSI-906, and cellular proliferation was measured. RESULTS mRNA analysis and immunostaining revealed significantly higher IGF-1 expression in low-grade SOCs than in SBOTs or high-grade SOCs. In response to exogenous treatment with IGF-1, low-grade cell lines exhibited more intense upregulation of phosphorylated AKT than did high-grade cell lines, an effect that was diminished with IGF-1R knockdown and MK-2206 treatment. Low-grade SOC cell lines were more sensitive to growth inhibition with OSI-906 than were high-grade cell lines. CONCLUSIONS IGF-1 is overexpressed in low-grade SOCs compared with SBOTs and high-grade SOCs. Additionally, low-grade SOC cell lines were more responsive to IGF-1 stimulation and IGF-1R inhibition than were high-grade lines. The IGF-1 pathway is therefore a potential therapeutic target in low-grade SOC.
Collapse
Affiliation(s)
- Erin R King
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheng JC, Auersperg N, Leung PCK. Inhibition of p53 induces invasion of serous borderline ovarian tumor cells by accentuating PI3K/Akt-mediated suppression of E-cadherin. Oncogene 2010; 30:1020-31. [PMID: 20972462 DOI: 10.1038/onc.2010.486] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serous borderline ovarian tumors (SBOTs) are slow-growing, non-invasive ovarian epithelial neoplasms. SBOTs are considered to be distinct entities that give rise to invasive low-grade serous carcinomas (LGCs), which have a relatively poor prognosis and are unrelated to high-grade serous carcinomas (HGCs). The mechanisms underlying the progression of non-invasive SBOTs to invasive epithelial ovarian carcinomas are not understood. We recently established short-term cultures of SBOT cells from tumor biopsies and showed that inactivation of p53, retinoblastoma (Rb) and/or PP2A by the simian virus 40 (SV40) large (LT) and small T antigens extends the life span of the cells and endows them with the ability to invade Matrigel-coated transwells. In this study, we show that concurrent inhibition of p53 and Rb by the SV40 LT produces cells (referred to as SBOT4-LT) with increased life span and cell invasion. To distinguish the roles of p53 and Rb in the progression from SBOTs to invasive ovarian carcinomas, we performed small interfering RNA-mediated knockdown of endogenous p53 in a spontaneously immortalized SBOT cell line, SBOT3.1, which increased cell invasion. This increased invasive activity was associated with the transcriptional downregulation of E-cadherin, correlated with an increase in PIK3CA levels and the increased activation of Akt. Conversely, in invasive LGC-derived MPSC1 cells, enhancing the levels of p53 decreased cell invasion and diminished the phosphatidylinositol 3-kinase (PI3K)/Akt-mediated downregulation of E-cadherin. Inhibition of Rb also enhanced invasiveness, but did not affect the levels of PIK3CA and E-cadherin in SBOT3.1 cells, suggesting that it functions by a different pathway. To our knowledge, this study is the first to show that p53 has an important role in the progression from SBOTs to invasive carcinomas. In addition, our findings suggest that downregulation of E-cadherin by the PI3K/Akt pathway contributes to this progression.
Collapse
Affiliation(s)
- J-C Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
10
|
Second primary cancers following borderline ovarian tumors. Arch Gynecol Obstet 2010; 283:1391-6. [DOI: 10.1007/s00404-010-1585-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
11
|
Woo MM, Salamanca CM, Symowicz J, Stack MS, Miller DM, Leung PC, Gilks CB, Auersperg N. SV40 early genes induce neoplastic properties in serous borderline ovarian tumor cells. Gynecol Oncol 2008; 111:125-31. [DOI: 10.1016/j.ygyno.2008.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/21/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
|