1
|
Miniaturized Test Loop for the Assessment of Blood Damage by Continuous-Flow Left-Ventricular Assist Devices. Ann Biomed Eng 2019; 48:768-779. [PMID: 31724071 DOI: 10.1007/s10439-019-02404-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/06/2019] [Indexed: 01/22/2023]
Abstract
Although the hemocompatibility of left-ventricular assist devices (LVADs) has continuously improved, assessment of hemolysis remains mandatory in pre-clinical testing. The ASTM-F1841 has standardized this assessment since 1997. However, the recommended usage of fresh, non-pooled human blood is hardly feasible with the test loop volume specified therein, when testing the device under test versus a predicate device as required by the international standard 10993-4. In this study, we compared ASTM-conforming (ASTM) and downscaled (mini) test loops with a one-third priming volume for the assessment of blood damage at the ASTM operating point. Blood damage was assessed for HeartMate 3 and BPX-80 in 6 experiments with heparinized porcine slaughterhouse blood for 6 h. We analyzed plasma free hemoglobin (pfHb), von Willebrand factor (vWF) concentration and collagen-binding functionality and calculated indices of hemolysis and vWF-ratios. The mini test loops provided significantly higher pfHb increase and consistently stronger vWF-ratio decrease and yielded a significantly better differentiation of the pumps. Interestingly, indices of hemolysis were generally lower in the mini set-up, indicating less adverse effects by the mini loop itself. Thus, we propose our mini test loop as suitable tool for clinically relevant standardized assessment of blood damage by future LVADs with single-donation human blood.
Collapse
|
2
|
Hijikata W, Rao J, Abe S, Takatani S, Shinshi T. Sensorless Viscosity Measurement in a Magnetically-Levitated Rotary Blood Pump. Artif Organs 2015; 39:559-68. [DOI: 10.1111/aor.12440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wataru Hijikata
- Precision and Intelligence Laboratory; Tokyo Institute of Technology; Yokohama Japan
| | - Jun Rao
- Interdisciplinary Graduate School of Science and Engineering; Tokyo Institute of Technology; Yokohama Japan
| | - Shodai Abe
- Interdisciplinary Graduate School of Science and Engineering; Tokyo Institute of Technology; Yokohama Japan
| | - Setsuo Takatani
- Division of Research and Development; MedTech Heart Inc.; Tokyo Japan
- Department of Cardiovascular Surgery; Nihon University School of Medicine; Tokyo Japan
| | - Tadahiko Shinshi
- Precision and Intelligence Laboratory; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
3
|
Yasui K, Kosaka R, Nishida M, Maruyama O, Kawaguchi Y, Yamane T. Optimal design of the hydrodynamic multi-arc bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level. Artif Organs 2013; 37:768-77. [PMID: 23980526 DOI: 10.1111/aor.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The purpose of the present study is to establish an optimal design of the multi-arc hydrodynamic bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level. The multi-arc bearing was designed to fulfill the required specifications: (i) ensuring the uniform bearing stiffness for various bearing angles; (ii) ensuring a higher bearing stiffness than the centrifugal force to prevent impeller whirl; and (iii) adjusting the bearing clearance as much as possible to reduce hemolysis. First, a numerical analysis was performed to optimize three design parameters of the multi-arc bearing: number of arcs N, bearing clearance C, and groove depth H. To validate the accuracy of the numerical analysis, the impeller trajectories for six pump models were measured. Finally, an in vitro hemolysis test was conducted to evaluate the hemolytic property of the multi-arc bearing. As a result of the numerical analysis, the optimal parameter combination was determined as follows: N=4, C=100 μm, and H ≥ 100 μm. In the measurements of the impeller trajectory, the optimal parameter combination was found to be as follows: N=4, C=90 μm, and H=100 μm. This result demonstrated the high reliability of the numerical analysis. In the hemolysis test, the parameter combination that achieved the smallest hemolysis was obtained as follows: N=4, C=90 μm, and H=100 μm. In conclusion, the multi-arc bearing could be optimized for the improvement of bearing stiffness and hemolysis level.
Collapse
|
4
|
Nagaoka E, Fujiwara T, Kitao T, Sakota D, Shinshi T, Arai H, Takatani S. MedTech Mag-Lev, Single-use, Extracorporeal Magnetically Levitated Centrifugal Blood Pump for Mid-term Circulatory Support. ASAIO J 2013; 59:246-52. [DOI: 10.1097/mat.0b013e31828a75e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Fujiwara T, Nagaoka E, Watanabe T, Miyagi N, Kitao T, Sakota D, Mamiya T, Shinshi T, Arai H, Takatani S. New generation extracorporeal membrane oxygenation with MedTech Mag-Lev, a single-use, magnetically levitated, centrifugal blood pump: preclinical evaluation in calves. Artif Organs 2013; 37:447-56. [PMID: 23489176 DOI: 10.1111/aor.12006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have evaluated the feasibility of a newly developed single-use, magnetically levitated centrifugal blood pump, MedTech Mag-Lev, in a 3-week extracorporeal membrane oxygenation (ECMO) study in calves against a Medtronic Bio-Pump BPX-80. A heparin- and silicone-coated polypropylene membrane oxygenator MERA NHP Excelung NSH-R was employed as an oxygenator. Six healthy male Holstein calves with body weights of about 100 kg were divided into two groups, four in the MedTech group and two in the Bio-Pump group. Under general anesthesia, the blood pump and oxygenator were inserted extracorporeally between the main pulmonary artery and the descending aorta via a fifth left thoracotomy. Postoperatively, both the pump and oxygen flow rates were controlled at 3 L/min. Heparin was continuously infused to maintain the activated clotting time at 200-240 s. All the MedTech ECMO calves completed the study duration. However, the Bio-Pump ECMO calves were terminated on postoperative days 7 and 10 because of severe hemolysis and thrombus formation. At the start of the MedTech ECMO, the pressure drop across the oxygenator was about 25 mm Hg with the pump operated at 2800 rpm and delivering 3 L/min flow. The PO2 of the oxygenator outlet was higher than 400 mm Hg with the PCO2 below 45 mm Hg. Hemolysis and thrombus were not seen in the MedTech ECMO circuits (plasma-free hemoglobin [PFH] < 5 mg/dL), while severe hemolysis (PFH > 20 mg/dL) and large thrombus were observed in the Bio-Pump ECMO circuits. Plasma leakage from the oxygenator did not occur in any ECMO circuits. Three-week cardiopulmonary support was performed successfully with the MedTech ECMO without circuit exchanges. The MedTech Mag-Lev could help extend the durability of ECMO circuits by the improved biocompatible performances.
Collapse
Affiliation(s)
- Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yokoyama N, Sakota D, Nagaoka E, Takatani S. Alterations in red blood cell volume and hemoglobin concentration, viscoelastic properties, and mechanical fragility caused by continuous flow pumping in calves. Artif Organs 2011; 35:791-9. [PMID: 21843294 DOI: 10.1111/j.1525-1594.2011.01317.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we have analyzed the changes in mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and the dynamic deformability and mechanical fragility of red blood cells (RBCs) in five male Holstein calves (body weight: 95.6 ± 10.8 kg) whose circulation was partially supported with a novel magnetically levitated extracorporeal centrifugal blood pump MedTech Dispo. One hour after the pumping has started, the MCV increased and the MCHC decreased by 1.064 ± 0.006 and 0.906 ± 0.050 times, respectively, as compared with those of the prepumped blood (P < 0.05). The deformability index L/W, where L and W are the long and short axes of the two-dimensional RBC images, respectively, sheared by a cyclically reversing shear flow increased indicating that the RBCs pumped for 1 h exhibited more elastic characteristics (P < 0.05). In addition, when the pumped blood cells were sheared for 30 min with a uniform shear stress of 25.38 Pa, the hemolysis level decreased dramatically as compared with the control blood, as more fragile RBCs were destroyed by pumping, leaving behind less fragile RBCs. All these characteristics of the RBCs exposed to continuous flow resemble those of young RBCs having larger MCV, lower MCHC, higher elasticity, and lower fragility. In conclusion, during continuous flow pumping, the RBCs having relatively lower threshold for hemolysis to mechanical shear stress generated by continuous flow blood pump (CFBP) are destroyed first and removed from circulation in the early stage of application of CFBP, thus leaving behind less fragile and stronger RBCs.
Collapse
Affiliation(s)
- Naoyuki Yokoyama
- Department of Artificial Organs, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Nagaoka E, Someya T, Kitao T, Kimura T, Ushiyama T, Hijikata W, Shinshi T, Arai H, Takatani S. Development of a Disposable Magnetically Levitated Centrifugal Blood Pump (MedTech Dispo) Intended for Bridge-to-Bridge Applications-Two-Week In Vivo Evaluation. Artif Organs 2010; 34:778-83. [DOI: 10.1111/j.1525-1594.2010.01107.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kosaka R, Maruyama O, Nishida M, Yada T, Saito S, Hirai S, Yamane T. Improvement of Hemocompatibility in Centrifugal Blood Pump With Hydrodynamic Bearings and Semi-open Impeller: In Vitro Evaluation. Artif Organs 2009; 33:798-804. [DOI: 10.1111/j.1525-1594.2009.00817.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Someya T, Kobayashi M, Waguri S, Ushiyama T, Nagaoka E, Hijikata W, Shinshi T, Arai H, Takatani S. Development of a Disposable Maglev Centrifugal Blood Pump Intended for One-Month Support in Bridge-to-Bridge Applications: In Vitro and Initial In Vivo Evaluation. Artif Organs 2009; 33:704-13. [DOI: 10.1111/j.1525-1594.2009.00900.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hijikata W, Shinshi T, Asama J, Li L, Hoshi H, Takatani S, Shimokohbe A. A magnetically levitated centrifugal blood pump with a simple-structured disposable pump head. Artif Organs 2008; 32:531-40. [PMID: 18638307 DOI: 10.1111/j.1525-1594.2008.00576.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A magnetically levitated centrifugal blood pump (MedTech Dispo) has been developed for use in a disposable extracorporeal system. The design of the pump is intended to eliminate mechanical contact with the impeller, to facilitate a simple disposable mechanism, and to reduce the blood-heating effects that are caused by motors and magnetic bearings. The bearing rotor attached to the impeller is suspended by a two degrees-of-freedom controlled radial magnetic bearing stator, which is situated outside the rotor. In the space inside the ringlike rotor, a magnetic coupling disk is placed to rotate the rotor and to ensure that the pump head is thermally isolated from the motor. In this system, the rotor can exhibit high passive stiffness due to the novel design of the closed magnetic circuits. The disposable pump head, which has a priming volume of 23 mL, consists of top and bottom housings, an impeller, and a rotor with a diameter of 50 mm. The pump can provide a head pressure of more than 300 mm Hg against a flow of 5 L/min. The normalized index of hemolysis of the MedTech Dispo is 0.0025 +/- 0.0005 g/100 L at 5 L/min against 250 mm Hg. This is one-seventh of the equivalent figure for a Bio Pump BPX-80 (Medtronic, Inc., Minneapolis, MN, USA), which has a value of 0.0170 +/- 0.0096 g/100 L. These results show that the MedTech Dispo offers high pumping performance and low blood trauma.
Collapse
Affiliation(s)
- Wataru Hijikata
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Malchesky PS. Artificial Organs 2006: a year in review. Artif Organs 2007; 31:225-41. [PMID: 17343699 DOI: 10.1111/j.1525-1594.2007.00370.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul S Malchesky
- Artificial Organs Editorial Office, 10 West Erie Street, Painesville, OH 44077, USA.
| |
Collapse
|