Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration.
Biotechnol Adv 2014;
32:449-61. [PMID:
24406815 DOI:
10.1016/j.biotechadv.2013.12.010]
[Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/14/2013] [Accepted: 12/28/2013] [Indexed: 12/18/2022]
Abstract
Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.
Collapse