1
|
Pescio M, Kundrat D, Dagnino G. Endovascular robotics: technical advances and future directions. MINIM INVASIV THER 2025:1-14. [PMID: 39835841 DOI: 10.1080/13645706.2025.2454237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Endovascular interventions excel in treating cardiovascular diseases in a minimally invasive manner, showing improved outcomes over open techniques. However, challenges related to precise navigation - still relying on 2D fluoroscopy - persist. This review examines the role of robotics, highlighting commercial and research platforms, while exploring emerging trends like MRI compatibility, enhanced navigation, and autonomy. MRI-compatible systems offer radiation-free 3D imaging. Human-robot interaction evolves with task-specific interfaces, while autonomy ranges from partial to full, aiding clinical operators. Challenges include complexity and cost, emphasizing compatibility and navigation advancements. Integrating MRI-compatible robots, refining human-robot interaction, and enhancing autonomy promise advancements in endovascular surgery, fueled by AI and innovative imaging.
Collapse
Affiliation(s)
- Matteo Pescio
- Bioengineering, Polytechnic University of Turin, Turin, Italy
- University of Turin, Turin, Italy
| | - Dennis Kundrat
- Individualized Therapy, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany
| | - Giulio Dagnino
- University of Turin, Turin, Italy
- Robotics and Mechatronics, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Zhao Y, Mei Z, Luo X, Mao J, Zhao Q, Liu G, Wu D. Remote vascular interventional surgery robotics: a literature review. Quant Imaging Med Surg 2022; 12:2552-2574. [PMID: 35371939 PMCID: PMC8923856 DOI: 10.21037/qims-21-792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/22/2021] [Indexed: 07/25/2023]
Abstract
Vascular interventional doctors are exposed to radiation hazards during surgery and endure high work intensity. Remote vascular interventional surgery robotics is a hot research field, in which researchers aim to not only protect the health of interventional doctors, but to also improve surgical accuracy and efficiency. However, the current vascular interventional robots have numerous shortcomings, such as poor haptic feedback, few compatible surgeries and instruments, and cumbersome maintenance and operational procedures. Nevertheless, vascular interventional surgery combined with robotics provides more cutting-edge directions, such as Internet remote surgery combined with 5G network technology and the application of artificial intelligence in surgical procedures. To summarize the developmental status and key technical points of intravascular interventional surgical robotics research, we performed a systematic literature search to retrieve original articles related to remote vascular interventional surgery robotics published up to December 2020. This review, which includes 113 articles published in English, introduces the mechanical and structural characteristics of various aspects of vascular interventional surgical robotics, discusses the current key features of vascular interventional surgical robotics in force sensing, haptic feedback, and control methods, and summarizes current frontiers in autonomous surgery, long-distance robotic telesurgery, and magnetic resonance imaging (MRI)-compatible structures. On the basis of summarizing the current research status of remote vascular interventional surgery robotics, we aim to propose a variety of prospects for future robotic systems.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Ziyang Mei
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Xiaoxiao Luo
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| | - Jingsong Mao
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Dezhi Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Tahir A, Iqbal H, Usman M, Ghaffar A, Hafeez A. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study. Int J Comput Assist Radiol Surg 2022; 17:531-539. [PMID: 35041132 DOI: 10.1007/s11548-022-02563-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Effective and efficient haptic guidance is desirable for tele-operated robotic surgery because it has a potential to enhance surgeon's skills, especially in coronary interventions where surgeon loses both an eye-hand coordination and a direct sight to the organ. This paper proposes a novel haptic guidance procedure-both kinesthetic and cutaneous, which solely depends upon X-ray images, for tele-robotic system that assists an efficient navigation of the guidewire towards the target location during a coronary intervention. METHODS Proposed methodology requires cardiologists to draw virtual fixtures (VFs) on angiograms as a preoperative procedure. During an operation, these VFs direct the guidewire to the desired coronary vessel. For this, the position and orientation of guidewire tip are calculated with respect to VFs' anatomy, using image processing on the real-time 2D fluoroscopic images. The haptic feedbacks are then rendered on to the master device depending on the interaction with attractive and repulsive, guidance and forbidden region VFs. RESULTS A feasibility study in the laboratory environment is performed by using a webcam as an image acquisition device and a phantom-based coronary vessel model. The subsequent statistical analysis shows that, on an average, a decrease of approx. 37% in task completion time is observed with haptic feedback. Moreover, haptic guidance is found effective for most difficult branch, whereas there is a minimal significance of such haptics for the easiest branch. CONCLUSIONS The proposed haptic guidance procedure may assist cardiologists for an efficient and effective guidewire navigation during a surgical procedure. The cutaneous haptics (vibration feedback) is found more helpful in coronary interventions compared with kinesthetic haptics (force feedback).
Collapse
Affiliation(s)
- Abdullah Tahir
- Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Faisalabad Campus, Lahore, Pakistan
| | - Hashim Iqbal
- Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Faisalabad Campus, Lahore, Pakistan
| | - Muhammad Usman
- Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Faisalabad Campus, Lahore, Pakistan
| | - Asim Ghaffar
- Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Faisalabad Campus, Lahore, Pakistan.
| | - Awais Hafeez
- Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Faisalabad Campus, Lahore, Pakistan
| |
Collapse
|
4
|
Norouzi-Ghazbi S, Mehrkish A, Abdulhafiz I, Abbasi-Hashemi T, Mahdi A, Janabi-Sharifi F. Design and experimental evaluation of an automated catheter operating system. Artif Organs 2021; 45:E171-E186. [PMID: 33237609 DOI: 10.1111/aor.13870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Manual catheter-based interventions (CBIs) suffer from exposure of the interventionalists to X-ray, and dependence of their performance on the expertise and fatigue level of the interventionalists. Robot-assisted catheterization systems (RACS) have been introduced in recent years to improve the efficiency of CBIs; however, using them is still associated with some difficulties such as set-up dependency to a specific type of intervention instrument, not being portable, and offering limited options of operation modes. The objective of this research is to develop a new RACS to address these shortcomings. We propose Althea II as an improvement for our previously introduced RACS, Althea I. Althea II is designed for both research purposes and clinical applications including catheter-based cardiovascular interventions. Althea II benefits from a novel structural design leading to a significantly reduced weight and making the device inclusive for a broader range of intervention instruments. Also, a tip detection algorithm is developed and integrated into the graphical user interface (GUI) to enable image-based navigation, and accordingly, fully automatic navigation. Althea II has improved the outcome of catheter-based interventions by increased accuracy and precision of the intervention. The system can navigate the catheter tip to a designated target with an accuracy higher than 90% in both velocity and positioning mode. The device is associated with an upgraded GUI equipped with a strong tip detection algorithm with an accuracy of 0.05 mm. Moreover, Althea II gains from a quicker assembly time (20 minutes, which equals five times faster). The independency from specific catheters, several modes of function, an imaged-based feedback control, portability, and a remote function should allow operation even from beginners and reduce X-ray exposure. The preliminary research studies verified the accuracy and repeatability of Althea II, demonstrated the feasibility and applicability of using the set-up in multiple applications, and highlighted the improved set-up capabilities over the currently available RACS.
Collapse
Affiliation(s)
| | - Ali Mehrkish
- Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | | | | | - Anas Mahdi
- Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Wang K, Liu J, Yan W, Lu Q, Nie S. Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments. Int J Comput Assist Radiol Surg 2020; 16:179-192. [PMID: 33089435 DOI: 10.1007/s11548-020-02278-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Robotic endovascular intervention system (REIS) has the advantages of telemanipulation without radiation damage, precise location, and isolation of hand quiver. However, current REIS lacks a force feedback, which leads to high clinical risks. For the high operational safety of remote operations, this research proposes a force feedback control method for a novel manipulator with multi-grippers and develops a prototype to verify its expected telepresence. METHODS A high-resolution force sensor is used to acquire and transmit the intervention resistance force to the control handle. When the handle is translated or rotated, a loading mechanism composed of a servomotor, a screw pair, a spring, and friction roller generates the resistance force transmitted to the doctor's hand through the handle. A force/displacement hybrid control and PID control algorithm are used for the smaller feedback force error and lower delay. RESULTS This manipulator and its control handle are tested in the simulated catheter and vascular cases. The experiments show that force feedback precision can reach 0.05 N and the delay is not more than 50 ms, and the bandwidth is 9 Hz@-3 dB. CONCLUSION The proposed force feedback method can recreate resistance force from the intervention devices. The control model is valid with higher precision and wide bands, which has laid foundations to the application of REIS in clinic.
Collapse
Affiliation(s)
- Kundong Wang
- Department of Instrument Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianyun Liu
- Department of Instrument Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwu Yan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Shanghai, 200433, China.
| | - Shengdong Nie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
6
|
Yang C, Guo S, Bao X, Xiao N, Shi L, Li Y, Jiang Y. A vascular interventional surgical robot based on surgeon's operating skills. Med Biol Eng Comput 2019; 57:1999-2010. [PMID: 31346947 DOI: 10.1007/s11517-019-02016-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
Interventional surgery is widely used in the treatment of cardiovascular and cerebrovascular diseases, and the development of surgical robots can greatly reduce the fatigue and radiation risks brought to surgeons during surgery. In this paper, we present a novel interventional surgical robot which allows surgeons to fully use their operating skills during remote control. Fuzzy control theory is used to guarantee control precision during the master-slave operation. The safety force feedback control is designed based on the catheter and guidewire spring model, and the force-position control is designed to decrease the potential damage due to the control delay. This study first evaluates the force-position control strategy using a vascular model experiment, and then an in vivo experiment is used to evaluate the precision of the surgical robot controlling the catheter and guidewire to the designated position. The in vivo experiment results and surgeon's feedback demonstrate that the proposed surgical robot is able to perform complex remote surgery in clinical application. Graphical abstract Surgeons perform remote interventional animal surgery using interventional surgical robots.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Shuxiang Guo
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, 100081, China. .,Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa, 760-8521, Japan.
| | - Xianqiang Bao
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Nan Xiao
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Liwei Shi
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuhua Jiang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
7
|
Hooshiar A, Najarian S, Dargahi J. Haptic Telerobotic Cardiovascular Intervention: A Review of Approaches, Methods, and Future Perspectives. IEEE Rev Biomed Eng 2019; 13:32-50. [PMID: 30946677 DOI: 10.1109/rbme.2019.2907458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac diseases are recognized as the leading cause of mortality, hospitalization, and medical prescription globally. The gold standard for the treatment of coronary artery stenosis is the percutaneous cardiac intervention that is performed under live X-ray imaging. Substantial clinical evidence shows that the surgeon and staff are prone to serious health problems due to X-ray exposure and occupational hazards. Telerobotic vascular intervention systems with a master-slave architecture reduced the X-ray exposure and enhanced the clinical outcomes; however, the loss of haptic feedback during surgery has been the main limitation of such systems. This paper is a review of the state of the art for haptic telerobotic cardiovascular interventions. A survey on the literature published between 2000 and 2019 was performed. Results of the survey were screened based on their relevance to this paper. Also, the leading research disciplines were identified based on the results of the survey. Furthermore, different approaches for sensor-based and model-based haptic telerobotic cardiovascular intervention, haptic rendering and actuation, and the pertinent methods were critically reviewed and compared. In the end, the current limitations of the state of the art, unexplored research areas as well as the future perspective of the research on this technology were laid out.
Collapse
|
8
|
Bao X, Guo S, Xiao N, Li Y, Shi L. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot. Biomed Microdevices 2018; 20:74. [PMID: 30116968 DOI: 10.1007/s10544-018-0318-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minimally invasive vascular interventional surgery is widely used and remote-controlled vascular interventional surgery robots (RVIRs) are being developed to reduce the occupational risk of the intervening physician in minimally invasive vascular interventional surgeries. Skilled surgeon performs surgeries mainly depending on the detection of collisions. Inaccurate force feedback will be difficult for surgeons to perform surgeries or even results in medical accidents. In addition, the surgeon cannot quickly and easily distinguish whether the proximal force exceeds the safety threshold of blood vessels or not, and thus it results in damage to the blood vessels. In this paper, we present a novel method comprising compensatory force measurement and multimodal force feedback (MFF). Calibration experiments and performance evaluation experiments were carried out. Experimental results demonstrated that the proposed method can measure the proximal force of catheter/guidewire accurately and assist surgeons to distinguish the change of proximal force more easily. This novel method is suitable for use in actual surgical operations.
Collapse
Affiliation(s)
- Xianqiang Bao
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuxiang Guo
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China. .,Intelligent Mechanical Systems Engineering Department, Kagawa University, Takamatsu, 761-0396, Japan.
| | - Nan Xiao
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Engineering Technology Research Center for Interventional Neuroradiology, and Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 10050, China
| | - Liwei Shi
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Abstract
Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the accuracy of surgical operations and reduce the number of occupational risks sustained by intervening physicians, such as radiation exposure and chronic neck/back pain. However, complex control of the RVIRs improves the doctor's operation difficulty and reduces the operation efficiency. Furthermore, incomplete sterilization of the RVIRs will increase the risk of infection, or even cause medical accidents. In this study, we introduced a novel method that provides higher operation efficiency than a previous prototype and allows for complete robot sterilization. A prototype was fabricated and validated through laboratory setting experiments and an in-human experiment. The results illustrated that the proposed RVIR has better performance compared with the previous prototype, and preliminarily demonstrated that the proposed RVIR has good safety and reliability and can be used in clinical surgeries.
Collapse
|
10
|
Linte CA, Camp JJ, Rettmann ME, Haemmerich D, Aktas MK, Huang DT, Packer DL, Holmes DR. Lesion modeling, characterization, and visualization for image-guided cardiac ablation therapy monitoring. J Med Imaging (Bellingham) 2018; 5:021218. [PMID: 29531966 PMCID: PMC5831757 DOI: 10.1117/1.jmi.5.2.021218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/02/2018] [Indexed: 11/14/2022] Open
Abstract
In spite of significant efforts to improve image-guided ablation therapy, a large number of patients undergoing ablation therapy to treat cardiac arrhythmic conditions require repeat procedures. The delivery of insufficient thermal dose is a significant contributor to incomplete tissue ablation, in turn leading to the arrhythmia recurrence. Ongoing research efforts aim to better characterize and visualize RF delivery to monitor the induced tissue damage during therapy. Here, we propose a method that entails modeling and visualization of the lesions in real-time. The described image-based ablation model relies on classical heat transfer principles to estimate tissue temperature in response to the ablation parameters, tissue properties, and duration. The ablation lesion quality, geometry, and overall progression are quantified on a voxel-by-voxel basis according to each voxel's cumulative temperature and time exposure. The model was evaluated both numerically under different parameter conditions, as well as experimentally, using ex vivo bovine tissue samples undergoing ex vivo clinically relevant ablation protocols. The studies demonstrated less than 5°C difference between the model-predicted and experimentally measured end-ablation temperatures. The model predicted lesion patterns were within 0.5 to 1 mm from the observed lesion patterns, suggesting sufficiently accurate modeling of the ablation lesions. Lastly, our proposed method enables therapy delivery feedback with no significant workflow latency. This study suggests that the proposed technique provides reasonably accurate and sufficiently fast visualizations of the delivered ablation lesions.
Collapse
Affiliation(s)
- Cristian A. Linte
- Rochester Institute of Technology, Biomedical Engineering and Chester F. Carlson Center for Imaging Science, Rochester, New York, United States
| | - Jon J. Camp
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| | - Maryam E. Rettmann
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - Dieter Haemmerich
- Medical University of South Carolina, Department of Pediatrics, Charleston, South Carolina, United States
| | - Mehmet K. Aktas
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - David T. Huang
- University of Rochester Medical Center, Division of Cardiology, Rochester, New York, United States
| | - Douglas L. Packer
- Mayo Clinic, Division of Cardiology, Rochester, Minnesota, United States
| | - David R. Holmes
- Mayo Clinic, Biomedical Imaging Resource, Rochester, Minnesota, United States
| |
Collapse
|
11
|
A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot. Biomed Microdevices 2018; 20:20. [PMID: 29460178 DOI: 10.1007/s10544-018-0261-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the overall accuracy of surgical operations and reduce the occupational risks of intervening physicians, such as radiation exposure and chronic neck/back pain. Several RVIRs have been used to operate catheters or guidewires accurately. However, a lack of cooperation between the catheters and guidewires results in the surgeon being unable to complete complex surgery by propelling the catheter/guidewire to the target position. Furthermore, it is a significant challenge to operate the catheter/guidewire accurately and detect their proximal force without damaging their surfaces. In this study, we introduce a novel method that allows catheters and guidewires to be operated simultaneously in complex surgery. Our method accurately captures force measurements and enables precisely controlled catheter and guidewire operation. A prototype is validated through various experiments. The results demonstrate the feasibility of the proposed RVIR to operate a catheter and guidewire accurately, detect the resistance forces, and complete complex surgical operations in a cooperative manner.
Collapse
|
12
|
Amirabdollahian F, Livatino S, Vahedi B, Gudipati R, Sheen P, Gawrie-Mohan S, Vasdev N. Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature. J Robot Surg 2017; 12:11-25. [PMID: 29196867 DOI: 10.1007/s11701-017-0763-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 01/27/2023]
Abstract
With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.
Collapse
Affiliation(s)
| | - Salvatore Livatino
- School of Engineering, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Behrad Vahedi
- School of Engineering, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Radhika Gudipati
- School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Patrick Sheen
- School of Engineering, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | | | - Nikhil Vasdev
- Department of Urology, Hertfordshire and Bedfordshire Urological Cancer Centre, Lister Hospital, Stevenage, SG1 4AB, UK.,School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| |
Collapse
|
13
|
Abstract
Several remote catheter navigation systems have been developed and are now commercially available. However, these systems typically require specialized catheters or equipment, as well as time-consuming operations for the system set-up. In this paper, we present CathROB, a highly compact and versatile robotic system for remote navigation of standard tip-steerable electrophysiology (EP) catheters. Key features of CathROB include an extremely compact design that minimizes encumbrance and time for system set-up in a standard cath lab, a force-sensing mechanism, an intuitive command interface, and functions for automatic catheter navigation and repositioning. We report in vitro and in vivo animal evaluation of CathROB. In vitro results showed good accuracy in remote catheter navigation and automatic repositioning (1.5 ± 0.6 mm for the left-side targets, 1.7 ± 0.4 mm for the right-side targets). Adequate tissue contact was achieved with remote navigation in vivo. There were no adverse events, including absence of cardiac perforation or cardiac damage, indicative of the safety profile of CathROB. Although further preclinical and clinical studies are required, the presented CathROB system seems to be a promising solution for an affordable and easy-to-use remote catheter navigation.
Collapse
|
14
|
Guo J, Guo S, Yu Y. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed Microdevices 2016; 18:76. [DOI: 10.1007/s10544-016-0100-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tavallaei MA, Gelman D, Lavdas MK, Skanes AC, Jones DL, Bax JS, Drangova M. Design, development and evaluation of a compact telerobotic catheter navigation system. Int J Med Robot 2015; 12:442-52. [PMID: 26525639 DOI: 10.1002/rcs.1711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/27/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Remote catheter navigation systems protect interventionalists from scattered ionizing radiation. However, these systems typically require specialized catheters and extensive operator training. METHODS A new compact and sterilizable telerobotic system is described, which allows remote navigation of conventional tip-steerable catheters, with three degrees of freedom, using an interface that takes advantage of the interventionalist's existing dexterity skills. The performance of the system is evaluated ex vivo and in vivo for remote catheter navigation and ablation delivery. RESULTS The system has absolute errors of 0.1 ± 0.1 mm and 7 ± 6° over 100 mm of axial motion and 360° of catheter rotation, respectively. In vivo experiments proved the safety of the proposed telerobotic system and demonstrated the feasibility of remote navigation and delivery of ablation. CONCLUSION The proposed telerobotic system allows the interventionalist to use conventional steerable catheters; while maintaining a safe distance from the radiation source, he/she can remotely navigate the catheter and deliver ablation lesions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammad Ali Tavallaei
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada
| | - Daniel Gelman
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada
| | - Michael Konstantine Lavdas
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Mechatronics Engineering Programme, University of Western Ontario, London, ON, Canada
| | - Allan C Skanes
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Douglas L Jones
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Canadian Surgical Technologies and Advanced Robotics, London Health Sciences Centre, University Hospital, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jeffrey S Bax
- Centre of Imaging Technology Commercialization (CIMTEC), London, ON, Canada
| | - Maria Drangova
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Biomedical Engineering Graduate Programme, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Lu WS, Xu WY, Pan F, Liu D, Tian ZM, Zeng Y. Clinical application of a vascular interventional robot in cerebral angiography. Int J Med Robot 2015; 12:132-6. [PMID: 25782077 DOI: 10.1002/rcs.1650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Wang-sheng Lu
- Department of Neurosurgery; Navy General Hospital of PLA; 6 Fucheng, Road Beijing 100048 China
| | - Wu-yi Xu
- Department of Neurosurgery; Navy General Hospital of PLA; 6 Fucheng, Road Beijing 100048 China
| | - Feng Pan
- Department of Neurosurgery; The First People's Hospital of Tancheng; Shandong 276199 China
| | - Da Liu
- Robotics Institute; Beijing University of Aeronautics and Astronautics; Beijing 100022 China
| | - Zeng-min Tian
- Department of Neurosurgery; Navy General Hospital of PLA; 6 Fucheng, Road Beijing 100048 China
| | - Yanjun Zeng
- Beijing University of Technology; 100 Pingleyuan, Chaoyang District Beijing 100022 China
| |
Collapse
|
17
|
Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 2013; 42:697-715. [PMID: 24281653 DOI: 10.1007/s10439-013-0946-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
Endovascular techniques have been embraced as a minimally-invasive treatment approach within different disciplines of interventional radiology and cardiology. The current practice of endovascular procedures, however, is limited by a number of factors including exposure to high doses of X-ray radiation, limited 3D imaging, and lack of contact force sensing from the endovascular tools and the vascular anatomy. More recently, advances in steerable catheters and development of master/slave robots have aimed to improve these practices by removing the operator from the radiation source and increasing the precision and stability of catheter motion with added degrees-of-freedom. Despite their increased application and a growing research interest in this area, many such systems have been designed without considering the natural manipulation skills and ergonomic preferences of the operators. Existing studies on tool interactions and natural manipulation skills of the operators are limited. In this manuscript, new technical developments in different aspects of robotic endovascular intervention including catheter instrumentation, intra-operative imaging and navigation techniques, as well as master/slave based robotic catheterization platforms are reviewed. We further address emerging trends and new research opportunities towards more widespread clinical acceptance of robotically assisted endovascular technologies.
Collapse
Affiliation(s)
- Hedyeh Rafii-Tari
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London, SW7 2AZ, UK,
| | | | | |
Collapse
|
18
|
Undar A, Wang S, Krawiec C. Impact of a unique international conference on pediatric mechanical circulatory support and pediatric cardiopulmonary perfusion research. Artif Organs 2012; 36:943-50. [PMID: 23121202 DOI: 10.1111/j.1525-1594.2012.01563.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is no question that the International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion is a unique event that has had a significant impact on the treatment of neonatal, infantile, and pediatric cardiopulmonary patients around the globe since 2005. This annual event will continue as long as there is a need to fill the gap for underserved patient population. It will also continue to recognize promising young investigators based on their full manuscripts for young investigator awards.
Collapse
|
19
|
Wang LY, Du HM, Zhang G, Tang W, Liu L, Jing W, Long J. The application of digital surgical diagnosis and treatment technology: a promising strategy for surgical reconstruction of craniomaxillofacial defect and deformity. Med Hypotheses 2011; 77:1004-5. [PMID: 21903336 DOI: 10.1016/j.mehy.2011.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
The craniomaxillofacial defect and deformity always leads to serious dysfunction in mastication and facial contour damage, significantly reducing patients' quality of life. However, surgical reconstruction of a craniomaxillofacial hard tissue defect or deformity is extremely complex and often does not result in desired facial morphology. Improving the result for patients with craniomaxillofacial defect and deformity remains a challenge for surgeons. Using digital technology for surgical diagnosis and treatment may help solve this problem. Computer-assisted surgical technology and surgical navigation technology are included in the accurate digital diagnosis and treatment system we propose. These technologies will increase the accuracy of the design of the operation plan. In addition, the intraoperative real-time navigating location system controlling the robotic arm or advanced intelligent robot will provide accurate, individualized surgical treatment for patients. Here we propose the hypothesis that a digital surgical diagnosis and treatment technology may provide a new approach for precise surgical reconstruction of complicated craniomaxillofacial defect and deformity. Our hypothesis involves modern digital surgery, a three-dimensional navigation surgery system and modern digital imaging technology, and our key aim is to establish a technological platform for customized digital surgical design and surgical navigation for craniomaxillofacial defect and deformity. If the hypothesis is proven practical, this novel therapeutic approach could improve the result of surgical reconstruction for craniomaxillofacial defect and deformity for many patients.
Collapse
Affiliation(s)
- Li-ya Wang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Park JW, Choi J, Park Y, Sun K. Haptic Virtual Fixture for Robotic Cardiac Catheter Navigation. Artif Organs 2011; 35:1127-31. [DOI: 10.1111/j.1525-1594.2011.01373.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Abstract
In this Editor's Review, articles published in 2010 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide such meaningful suggestions to the author's work whether eventually accepted or rejected and especially to those whose native tongue is not English. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. We look forward to recording further advances in the coming years.
Collapse
|