1
|
Karsan N, Goadsby PJ. Intervening in the Premonitory Phase to Prevent Migraine: Prospects for Pharmacotherapy. CNS Drugs 2024; 38:533-546. [PMID: 38822165 DOI: 10.1007/s40263-024-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/02/2024]
Abstract
Migraine is a common brain condition characterised by disabling attacks of headache with sensory sensitivities. Despite increasing understanding of migraine neurobiology and the impacts of this on therapeutic developments, there remains a need for treatment options for patients underserved by currently available therapies. The first specific drugs developed to treat migraine acutely, the serotonin-5-hydroxytryptamine [5-HT1B/1D] receptor agonists (triptans), seem to require headache onset in order to have an effect, while early treatment during mild pain before headache escalation improves short-term and long-term outcomes. Some patients find treating in the early window once headache has started but not escalated difficult, and migraine can arise from sleep or in the early hours of the morning, making prompt treatment after pain onset challenging. Triptans may be deemed unsuitable for use in patients with vascular disease and in those of older age and may not be effective in a proportion of patients. Headache is also increasingly recognised as being just one of the many facets of the migraine attack, and for some patients it is not the most disabling symptom. In many patients, painless symptoms can start prior to headache onset and can reliably warn of impending headache. There is, therefore, a need to identify therapeutic targets and agents that may be used as early as possible in the course of the attack, to prevent headache onset before it starts, and to reduce both headache and non-headache related attack burden. Early small studies using domperidone, naratriptan and dihydroergotamine have suggested that this approach could be useful; these studies were methodologically less rigorous than modern day treatment studies, of small sample size, and have not since been replicated. The emergence of novel targeted migraine treatments more recently, specifically calcitonin gene-related peptide (CGRP) receptor antagonists (gepants), has reignited interest in this strategy, with encouraging results. This review summarises historical and emerging data in this area, supporting use of the premonitory phase as an opportunity to intervene as early as possible in migraine to prevent attack-related morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK.
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Antonopoulos SR, Scharnhorst M, Nalley N, Durham PL. Method for cryopreservation of trigeminal ganglion for establishing primary cultures of neurons and glia. J Neurosci Methods 2024; 402:110034. [PMID: 38072069 DOI: 10.1016/j.jneumeth.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Primary neuronal cultures are used to elucidate cellular and molecular mechanisms involved in disease pathology and modulation by pharmaceuticals and nutraceuticals, and to identify novel therapeutic targets. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it can be difficult to produce high-quality consistent cultures. To overcome these issues, cryopreservation can be used to obtain standardized, high-quality stocks of neuronal cultures. NEW METHOD In this study, we present a simplified cryopreservation method for rodent primary trigeminal ganglion neurons and glia from Sprague-Dawley neonates, using a 90:10 (v/v) fetal bovine serum/dimethyl sulfoxide cell freezing medium. RESULTS Cryopreserved trigeminal ganglion cells stored for up to one year in liquid nitrogen exhibited similar neuronal and glial cell morphology to fresh cultures and retained high cell viability. Proteins implicated in inflammation and pain signaling were expressed in agreement with the reported subcellular localization. Additionally, both neurons and glial cells exhibited an increase in intracellular calcium levels in response to a depolarizing stimulus. Cryopreserved cells were also transiently transfected with reporter genes. COMPARISON WITH EXISTING METHODS Our method is simple, does not require special reagents or equipment, will save time and money, increase flexibility in study design, and produce consistent cultures. CONCLUSIONS This method for the preparation and cryopreservation of trigeminal ganglia results in primary cultures of neurons and glia similar in viability and morphology to fresh preparations that could be utilized for biochemical, cellular, and molecular studies, increase reproducibility, and save laboratory resources.
Collapse
Affiliation(s)
- Sophia R Antonopoulos
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Mikayla Scharnhorst
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Nicole Nalley
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Paul L Durham
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA.
| |
Collapse
|
3
|
Aurora SK, Shrewsbury SB, Ray S, Hindiyeh N, Nguyen L. A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection. Headache 2021; 61:576-589. [PMID: 33793965 PMCID: PMC8251535 DOI: 10.1111/head.14099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Background Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut–brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions. Objective To summarize the available studies supporting a link between GI comorbidities and migraine, including historical and current scientific evidence, as well as provide evidence that symptoms of GI disorders are also observed outside of migraine attacks during the interictal period. Additionally, the importance of route of administration and formulation of migraine therapies for patients with GI symptoms will be discussed. Methods A literature search of PubMed for articles relating to the relationship between the gut and the brain with no restriction on the publication year was performed. Studies providing scientific support for associations of gastroparesis, functional dyspepsia, and CVS with migraine and the impact these associations may have on migraine treatment were the primary focus. This is a narrative review of identified studies. Results Although the association between migraine and GI disorders has received very little attention in the literature, the existing evidence suggests that they may share a common etiology. In particular, the relationship between migraine, gastric motility, and vomiting has important clinical implications in the treatment of migraine, as delayed gastric emptying and vomiting may affect oral dosing compliance, and thus, the absorption and efficacy of oral migraine treatments. Conclusions There is evidence of a link between migraine and GI comorbidities, including those under the DGBI classification. Many patients do not find adequate relief with oral migraine therapies, which further necessitates increased recognition of GI disorders in patients with migraine by the headache community.
Collapse
Affiliation(s)
- Sheena K Aurora
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA.,Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Sutapa Ray
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA
| | - Nada Hindiyeh
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Linda Nguyen
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Currò D, Navarra P, Samengo I, Martire M. P2X7 receptors exert a permissive effect on the activation of presynaptic AMPA receptors in rat trigeminal caudal nucleus glutamatergic nerve terminals. J Headache Pain 2020; 21:83. [PMID: 32615921 PMCID: PMC7330953 DOI: 10.1186/s10194-020-01153-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Purine receptors play roles in peripheral and central sensitization and are associated with migraine headache. We investigated the possibility that ATP plays a permissive role in the activation of AMPA receptors thus inducing Glu release from nerve terminals isolated from the rat trigeminal caudal nucleus (TCN). Methods Nerve endings isolated from the rat TCN were loaded with [3H]D-aspartic acid ([3H]D-ASP), layered into thermostated superfusion chambers, and perfused continuously with physiological medium, alone or with various test drugs. Radioactivity was measured to assess [3H]D-ASP release under different experimental conditions. Results Synaptosomal [3H]D-ASP spontaneous release was stimulated by ATP and to an even greater extent by the ATP analogue benzoylbenzoylATP (BzATP). The stimulation of [3H]D-ASP basal release by the purinergic agonists was prevented by the selective P2X7 receptor antagonist A438079. AMPA had no effect on basal [3H]D-ASP release, but the release observed when synaptosomes were exposed to AMPA plus a purinoceptor agonist exceeded that observed with ATP or BzATP alone. The selective AMPA receptor antagonist NBQX blocked this “excess” release. Co-exposure to AMPA and BzATP, each at a concentration with no release-stimulating effects, evoked a significant increase in [3H]D-ASP basal release, which was prevented by exposure to a selective AMPA antagonist. Conclusions P2X7 receptors expressed on glutamatergic nerve terminals in the rat TCN can mediate Glu release directly and indirectly by facilitating the activation of presynaptic AMPA receptors. The high level of glial ATP that occurs during chronic pain states can promote widespread release of Glu as well as can increase the function of AMPA receptors. In this manner, ATP contributes to the AMPA receptor activation involved in the onset and maintenance of the central sensitization associated with chronic pain.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, School of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Irene Samengo
- Institute of Pharmacology, School of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Maria Martire
- Institute of Pharmacology, School of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
5
|
Ong JJY, De Felice M. Migraine Treatment: Current Acute Medications and Their Potential Mechanisms of Action. Neurotherapeutics 2018; 15:274-290. [PMID: 29235068 PMCID: PMC5935632 DOI: 10.1007/s13311-017-0592-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Migraine is a common and disabling primary headache disorder with a significant socioeconomic burden. The management of migraine is multifaceted and is generally dichotomized into acute and preventive strategies, with several treatment modalities. The aims of acute pharmacological treatment are to rapidly restore function with minimal recurrence, with the avoidance of side effects. The choice of pharmacological treatment is individualized, and is based on the consideration of the characteristics of the migraine attack, the patient's concomitant medical problems, and treatment preferences. Notwithstanding, a good understanding of the pharmacodynamic and pharmacokinetic properties of the various drug options is essential to guide therapy. The current approach and concepts relevant to the acute pharmacological treatment of migraine will be explored in this review.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility, Kings College Hospital, London, UK.
- Department of Medicine, Division of Neurology, National University Health System, University Medicine Cluster, Singapore, Singapore.
| | - Milena De Felice
- School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
De Logu F, Nassini R, Landini L, Geppetti P. Pathways of CGRP Release from Primary Sensory Neurons. Handb Exp Pharmacol 2018; 255:65-84. [PMID: 29980913 DOI: 10.1007/164_2018_145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The benefit reported in a variety of clinical trials by a series of small molecule antagonists for the calcitonin gene-related peptide (CGRP) receptor, or four monoclonal antibodies against the neuropeptide or its receptor, has underscored the release of CGRP from terminals of primary sensory neurons, including trigeminal neurons, as one of the major mechanisms of migraine headaches. A large variety of excitatory ion channels and receptors have been reported to elicit CGRP release, thus proposing these agonists as migraine-provoking agents. On the other side, activators of inhibitory channels and receptors may be regarded as potential antimigraine agents. The knowledge of the intracellular pathways underlying the exocytotic process that results in CGRP secretion or its inhibition is, therefore, of importance for understanding how migraine pain originates and how to treat the disease.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center, University of Florence, Florence, Italy.
| |
Collapse
|
7
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
8
|
The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 2015; 11:307-16. [PMID: 25957584 PMCID: PMC4529850 DOI: 10.1007/s11302-015-9453-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.
Collapse
|
9
|
Abstract
Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
10
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
11
|
|
12
|
Abstract
Migraine is a prevalent and disabling brain disorder that costs billions of dollars annually in direct healthcare costs, and school and work absenteeism and presenteeism. The objective of acute treatment is a cost-effective, rapid restoration of functional ability, with minimal recurrence and adverse effects. The acute treatment of migraine includes specific drugs, which currently all have vasoconstrictive effects (dihydroergotamine and triptans), and nonspecific drugs that include paracetamol (acetaminophen), combination analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), dopamine antagonists, narcotics and corticosteroids. NSAIDs have both peripheral and central effects on reversing migraine, and so may represent the best alternative for patients who cannot use triptans and ergots due to vascular contraindications. Narcotics and habituating medications should be avoided in the acute treatment of migraine, as the risk for transformation to chronic daily headache is excessively high at a relatively infrequent rate of exposure.
Collapse
Affiliation(s)
- Arnaldo N Da Silva
- Center for Headache and Pain, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
13
|
Tepper SJ, Kori SH, Borland SW, Wang MH, Hu B, Mathew NT, Silberstein SD. Efficacy and Safety of MAP0004, Orally Inhaled DHE in Treating Migraines With and Without Allodynia. Headache 2011; 52:37-47. [DOI: 10.1111/j.1526-4610.2011.02041.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Tepper SJ, Kori SH, Goadsby PJ, Winner PK, Wang MH, Silberstein SD, Cutrer FM. MAP0004, orally inhaled dihydroergotamine for acute treatment of migraine: efficacy of early and late treatments. Mayo Clin Proc 2011; 86:948-55. [PMID: 21964172 PMCID: PMC3184024 DOI: 10.4065/mcp.2011.0093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To evaluate the efficacy of MAP0004, an orally inhaled dihydroergotamine, for acute treatment of migraine when administered at various time points from within 1 hour to more than 8 hours after migraine onset. PATIENTS AND METHODS This post hoc subanalysis was conducted using data from 902 patients enrolled in a randomized, double-blind, placebo-controlled, 2-arm, phase 3, multicenter study conducted from July 14, 2008, through March 23, 2009. End points were 2-hour pain relief and pain-free rates in patients who treated a migraine in ≤1 hour, from >1 hour to ≤4 hours, from >4 to ≤8 hours, or in >8 hours after onset of migraine, given that patients may be unwilling or unable to initiate treatment at headache inception. RESULTS Treatment with MAP0004 was significantly more effective than placebo in relieving pain at all treatment points (≤1 hour after start of migraine: 66% [74/112] for MAP0004 vs 41% [48/118] for placebo, P<.001; >1 to ≤4 hours: 60% [91/153] vs 35% [58/168], P<.001; >4 to ≤8 hours: 53% [36/68] vs 30% [16/54], P=.008; and >8 hours: 48% [25/52] vs 24% [11/46], P=.007). Pain-free rates were also significantly higher with MAP0004 than placebo for treatment within 8 hours after migraine onset (≤1 hour: 38% [43/112] for MAP0004 vs 13% [15/118] for placebo, P<.001; >1 to ≤4 hours: 28% [43/153] vs 10% [17/168], P<.001; >4 to ≤8 hours: 22% [15/68] vs 7% [4/54], P<.025) but not at >8 hours (19% [10/52] vs 9% [4/46], P=.106). CONCLUSION This post hoc subanalysis shows that MAP0004 was effective in treating migraine irrespective of the time of treatment, even more than 8 hours after onset of migraine pain.
Collapse
Affiliation(s)
- Stewart J Tepper
- Center for Headache and Pain, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195-0002, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Silberstein SD. Meeting acute migraine treatment needs through novel treatment formulations. Neurotherapeutics 2010; 7:153-8. [PMID: 20430313 PMCID: PMC5084095 DOI: 10.1016/j.nurt.2010.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/02/2010] [Indexed: 11/19/2022] Open
Abstract
Migraineurs often do not use acute migraine-specific medications. Patient-reported satisfaction with triptans is modest. Patients are generally interested in obtaining more rapid and complete symptom relief. The role of trigeminal vascular activation may explain why some patients fail to respond to current treatment. Novel formulations of currently available acute migraine treatments have been developed, with improved clinical outcomes, response times, and pain-free rates. Currently available effective, novel, acute migraine therapies include needle-free injectable sumatriptan and effervescent diclofenac. Orally inhaled dihydroergotamine is a new treatment modality. These novel formulations may help patients achieve desirable outcomes, including faster and more complete relief, more consistent response, and improved drug tolerability.
Collapse
Affiliation(s)
- Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|