1
|
Interneuron dysfunction in epilepsy: An experimental approach using immature brain insults to induce neuronal migration disorders. Epilepsy Res 2019; 156:106185. [DOI: 10.1016/j.eplepsyres.2019.106185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 01/16/2023]
|
2
|
Marques-Carneiro JE, Persike DS, Litzahn JJ, Cassel JC, Nehlig A, Fernandes MJDS. Hippocampal Proteome of Rats Subjected to the Li-Pilocarpine Epilepsy Model and the Effect of Carisbamate Treatment. Pharmaceuticals (Basel) 2017; 10:ph10030067. [PMID: 28758946 PMCID: PMC5620611 DOI: 10.3390/ph10030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
In adult rats, the administration of lithium–pilocarpine (LiPilo) reproduces most clinical and neuropathological features of human temporal lobe epilepsy (TLE). Carisbamate (CRS) possesses the property of modifying epileptogenesis in this model. Indeed, about 50% of rats subjected to LiPilo status epilepticus (SE) develop non-convulsive seizures (NCS) instead of motor seizures when treated with CRS. However, the mechanisms underlying these effects remain unknown. The aim of this study was to perform a proteomic analysis in the hippocampus of rats receiving LiPilo and developing motor seizures or NCS following CRS treatment. Fifteen adult male Sprague–Dawley rats were used. SE was induced by LiPilo injection. CRS treatment was initiated at 1 h and 9 h after SE onset and maintained for 7 days, twice daily. Four groups were studied after video-EEG control of the occurrence of motor seizures: a control group receiving saline (CT n = 3) and three groups that underwent SE: rats treated with diazepam (DZP n = 4), rats treated with CRS displaying NCS (CRS-NCS n = 4) or motor seizures (CRS-TLE n = 4). Proteomic analysis was conducted by 2D-SDS-PAGE. Twenty-four proteins were found altered. In the CRS-NCS group, proteins related to glycolysis and ATP synthesis were down-regulated while proteins associated with pyruvate catabolism were up-regulated. Moreover, among the other proteins differentially expressed, we found proteins related to inflammatory processes, protein folding, tissue regeneration, response to oxidative stress, gene expression, biogenesis of synaptic vesicles, signal transduction, axonal transport, microtubule formation, cell survival, and neuronal plasticity. Our results suggest a global reduction of glycolysis and cellular energy production that might affect brain excitability. In addition, CRS seems to modulate proteins related to many other pathways that could significantly participate in the epileptogenesis-modifying effect observed.
Collapse
Affiliation(s)
- José Eduardo Marques-Carneiro
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Daniele Suzete Persike
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Julia Julie Litzahn
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| | - Jean-Christophe Cassel
- Unistra, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, 67000 Strasbourg, France.
- CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000 Strasbourg, France.
| | - Astrid Nehlig
- INSERM U 1129 "Infantile Epilepsies and Brain Plasticity", 75015 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, CEA, 91990 Gif sur Yvette, France.
| | - Maria José da Silva Fernandes
- Departamento de Neurologia e Neurocirurgia, Disciplina Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP 04039-032 São Paulo, Brazil.
| |
Collapse
|
3
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
4
|
Teng YC, Tai YI, Huang HJ, Lin AMY. Melatonin Ameliorates Arsenite-Induced Neurotoxicity: Involvement of Autophagy and Mitochondria. Mol Neurobiol 2015; 52:1015-22. [DOI: 10.1007/s12035-015-9250-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Takano T, Matsui K. Increased expression of GAP43 in interneurons in a rat model of experimental polymicrogyria. J Child Neurol 2015; 30:716-28. [PMID: 25061039 DOI: 10.1177/0883073814541476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/01/2014] [Indexed: 12/15/2022]
Abstract
To investigate seizure susceptibility in polymicrogyria, the seizure threshold and growth-associated protein GAP43 expression were analyzed in a rat experimental model of polymicrogyria induced by intracerebral injection of ibotenate. A total of 72 neonates from 9 pregnant rats were used. Intraperitoneal pentylenetetrazole injection did not induce any seizure activity in the control rats, although it elicited seizures of variable severity in the polymicrogyria rats. Fluoro-Jade B-positive degenerating interneurons were found in the polymicrogyria brains; however, no such neurons were detected in the control brains. In the polymicrogyria rats, the GAP43 expression was significantly and widely distributed in the brain, and the percentage of parvalbumin-positive interneurons in the GAP43-positive cells was significantly higher than that observed in the nonphosphorylated neurofilament-positive pyramidal cells. We conclude that the relatively selective vulnerability of inhibitory interneurons constitutes the basis for the decreased seizure threshold observed in this model of polymicrogyria.
Collapse
Affiliation(s)
- Tomoyuki Takano
- Department of Pediatrics, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan
| |
Collapse
|
6
|
BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol 2012; 235:228-37. [PMID: 22265658 DOI: 10.1016/j.expneurol.2012.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/25/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
The brain is capable of remarkable synaptic reorganization following stress and injury, often using the same molecular machinery that governs neurodevelopment. This form of plasticity is crucial for restoring and maintaining network function. However, neurodegeneration and subsequent reorganization can also play a role in disease pathogenesis, as is seen in temporal lobe epilepsy and Alzheimer's disease. β-Secretase-1 (BACE1) is a protease known for cleaving β-amyloid precursor protein into β-amyloid (Aβ), a major constituent in amyloid plaques. Emerging evidence suggests that BACE1 is also involved with synaptic plasticity and nerve regeneration. Here we examined whether BACE1 immunoreactivity (IR) was altered in pilocarpine-induced epileptic CD1 mice in a manner consistent with the synaptic reorganization seen during epileptogenesis. BACE1-IR increased in the CA3 mossy fiber field and dentate inner molecular layer in pilocarpine-induced epileptic mice, relative to controls (saline-treated mice and mice 24-48 h after pilocarpine-status), and paralleled aberrant expression of neuropeptide Y. Regionally increased BACE1-IR also occurred in neuropil in hippocampal area CA1 and in subregions of the amygdala and temporal cortex in epileptic mice, colocalizing with increased IR for growth associated protein 43 (GAP43) and polysialylated-neural cell adhesion molecule (PSA-NCAM), but reduced IR for microtubule-associated protein 2 (MAP2). These findings suggest that BACE1 is involved in aberrant limbic axonal sprouting in a model of temporal lobe epilepsy, warranting further investigation into the role of BACE1 in physiological vs. pathological neuronal plasticity.
Collapse
|
7
|
Károly N, Mihály A, Dobó E. Comparative immunohistochemistry of synaptic markers in the rodent hippocampus in pilocarpine epilepsy. Acta Histochem 2011; 113:656-62. [PMID: 20846710 DOI: 10.1016/j.acthis.2010.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/26/2022]
Abstract
Pilocarpine-induced epileptic state (Status epilepticus) generates an aberrant sprouting of hippocampal mossy fibers, which alter the intrahippocampal circuits. The mechanisms of the synaptic plasticity remain to be determined. In our studies in mice and rats, pilocarpine-induced seizures were done in order to gain information on the process of synaptogenesis. After a 2-month survival period, changes in the levels of synaptic markers (GAP-43 and Syn-I) were examined in the hippocampus by means of semi-quantitative immunohistochemistry. Mossy fiber sprouting (MFS) was examined in each brain using Timm's sulphide-silver method. Despite the marked behavioral manifestations caused by pilocarpine treatment, only 40% of the rats and 56% of the mice showed MFS. Pilocarpine treatment significantly reduced the GAP-43 immunoreactivity in the inner molecular layer in both species, with some minor differences in the staining pattern. Syn-I immunohistochemistry revealed species differences in the sprouting process. The strong immunoreactive band of the inner molecular layer in rats corresponded to the Timm-positive ectopic mossy fibers. The staining intensity in this layer, representing the ectopic mossy fibers, was weak in the mouse. The Syn-I immunoreactivity decreased significantly in the hilum, where Timm's method also demonstrated enhanced sprouting. This proved that, while sprouted axons displayed strong Syn-I staining in rats, ectopic mossy fibers in mice did not express this synaptic marker. The species variability in the expression of synaptic markers in sprouted axons following pilocarpine treatment indicated different synaptic mechanisms of epileptogenesis.
Collapse
|
8
|
Abstract
Interictal spiking is seen in the EEG of epileptic patients between seizures. To date, the roles played by interictal events in seizure occurrence and in epileptogenesis remain elusive. While interictal spikes may herald the onset of electrographic seizures, experimental data indicate that hippocampus-driven interictal events prevent seizure precipitation. Even less clear than the role of interictal events in seizure occurrence is whether and how interictal spikes contribute to epileptogenesis. Thus, while plastic changes within limbic neuronal networks may result from ongoing interictal activity, experimental evidence supports the view that epileptogenesis is accompanied by a decrease in hippocampus-driven interictal activity.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, Montréal, Canada
| | | | | |
Collapse
|
9
|
Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases of the lithium–pilocarpine model in the immature and adult rat. Exp Neurol 2007; 204:720-32. [PMID: 17292888 DOI: 10.1016/j.expneurol.2007.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/18/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022]
Abstract
RATIONALE Lithium-pilocarpine-induced status epilepticus (SE) generates neuronal lesions in the limbic forebrain, cerebral cortex and thalamus that lead to circuit reorganization and spontaneous recurrent seizures. The process of reorganization in regions with neuronal damage is not fully clarified. METHODS In the present study, we evaluated by immunohistochemistry the early reorganization during the latent period with two neuronal markers, synaptophysin and growth-associated protein 43 (GAP-43) in rats subjected to SE at PN21 and as adults. RESULTS Synaptophysin immunoreactivity increased between 24 h and 3 weeks post-SE in regions with severe and rapidly occurring neuronal loss, namely thalamus, amygdala, piriform and entorhinal cortices. GAP-43 expression decreased at 1 and 3 weeks in the same regions. The immunoreactivity of synaptophysin and GAP-43 increased in the inner molecular layer of dentate gyrus from 24 h after SE, and decreased in the outer molecular layer from 72 h after SE. These changes likely result from the death of hilar neurons and the reduction of the input from the entorhinal cortex. In 21-day-old rats that experience less SE-induced neuronal loss, increased immunoreactivity of synaptophysin was only found in piriform and entorhinal cortex while no changes occurred in GAP-43 expression. CONCLUSION These findings suggest that there is an age-related relation between the extent and rapidity of the process of neuronal death and the expression of these markers. Synaptophysin appears to be a more sensitive marker of plasticity induced by SE than GAP-43.
Collapse
Affiliation(s)
- Ryosuke Hanaya
- INSERM U405, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|