1
|
Øyehaug L. Slow ion concentration oscillations and multiple states in neuron-glia interaction-insights gained from reduced mathematical models. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1189118. [PMID: 37284003 PMCID: PMC10241345 DOI: 10.3389/fnetp.2023.1189118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
When potassium in the extracellular space separating neurons and glia reaches sufficient levels, neurons may fire spontaneous action potentials or even become inactivated due to membrane depolarisation, which, in turn, may lead to increased extracellular potassium levels. Under certain circumstances, this chain of events may trigger periodic bursts of neuronal activity. In the present study, reduced neuron-glia models are applied to explore the relationship between bursting behaviour and ion concentration dynamics. These reduced models are built based on a previously developed neuron-glia model, in which channel-mediated neuronal sodium and potassium currents are replaced by a function of neuronal sodium and extracellular potassium concentrations. Simulated dynamics of the resulting two reduced models display features that are qualitatively similar to those of the existing neuron-glia model. Bifurcation analyses of the reduced models show rich and interesting dynamics that include the existence of Hopf bifurcations between which the models exhibit slow ion concentration oscillations for a wide range of parameter values. The study demonstrates that even very simple models can provide insights of possible relevance to complex phenomena.
Collapse
|
2
|
Khaspekov LG, Frumkina LE. Molecular mechanisms mediating involvement of glial cells in brain plastic remodeling in epilepsy. BIOCHEMISTRY (MOSCOW) 2017; 82:380-391. [DOI: 10.1134/s0006297917030178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 2016; 6:24950. [PMID: 27121568 PMCID: PMC4848477 DOI: 10.1038/srep24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.
Collapse
|
4
|
Enhanced multiple vibrational resonances by Na+ and K+ dynamics in a neuron model. Sci Rep 2015; 5:7684. [PMID: 25567752 PMCID: PMC4286765 DOI: 10.1038/srep07684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
Some neuronal receptors perceive external input in the form of hybrid periodic signals. The signal detection may be based on the mechanism of vibrational resonance, in which a system's response to the low frequency signal can become optimal by an appropriate choice of the vibration amplitude of HFS. The vibrational resonance effect is investigated in a neuron model in which the intra- and extra-cellular potassium and sodium concentrations are allowed to evolve temporally, depending on ion currents, Na+-K+ pumps, glial buffering, and ion diffusion. Our results reveal that, compared to the vibrational resonances in the model with constant ion concentrations, the significantly enhanced vibrational multi-resonances can be observed for the single neuron system where the potassium and sodium ion concentrations vary temporally. Thus, in contradiction to a popular view that ion concentrations dynamics play little role in signal detection, we indicate that the neuron's response to an external subthreshold signal can be largely improved by sodium and potassium dynamics.
Collapse
|
5
|
Boison D, Sandau US, Ruskin DN, Kawamura M, Masino SA. Homeostatic control of brain function - new approaches to understand epileptogenesis. Front Cell Neurosci 2013; 7:109. [PMID: 23882181 PMCID: PMC3712329 DOI: 10.3389/fncel.2013.00109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022] Open
Abstract
Neuronal excitability of the brain and ongoing homeostasis depend not only on intrinsic neuronal properties, but also on external environmental factors; together these determine the functionality of neuronal networks. Homeostatic factors become critically important during epileptogenesis, a process that involves complex disruption of self-regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator adenosine, a purine nucleoside whose availability is largely regulated by astrocytes. Endogenous adenosine modulates complex network function through multiple mechanisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics, and adenosine receptor-independent changes to the epigenome. Accumulating evidence from our laboratories shows that disruption of adenosine homeostasis plays a major role in epileptogenesis. Conversely, we have found that reconstruction of adenosine's homeostatic functions provides new hope for the prevention of epileptogenesis. We will discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis on an epigenetic level, and how dietary interventions can be used to restore network homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the brain offers a new conceptual advance for the treatment of neurological conditions which goes far beyond current target-centric treatment approaches.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | | | | | | | | |
Collapse
|
6
|
Knauer B, Jochems A, Valero-Aracama MJ, Yoshida M. Long-lasting intrinsic persistent firing in rat CA1 pyramidal cells: a possible mechanism for active maintenance of memory. Hippocampus 2013; 23:820-31. [PMID: 23609880 DOI: 10.1002/hipo.22136] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
The hippocampus is critical for memory tasks which require an active maintenance of memory for a short period of time; however, the underlying neural mechanisms remain unknown. Most theoretical and computational models, which date back to the classic proposals by Donald Hebb in , have been self-constrained by anatomy, as most models rely on the recurrent connectivity in region CA3 to support "reverberating activity" capable of memory maintenance. However, several physiological and behavioral studies have specifically implicated region CA1 in tasks which require an active maintenance of memory. Here, we demonstrate that despite limited recurrent connectivity, CA1 contains a robust cellular mechanism for active memory maintenance in the form of self-sustained persistent firing. Using in vitro whole-cell recordings, we demonstrate that brief stimulation (0.2-2 s) reliably elicits long-lasting (> 30 s) persistent firing that is supported by the calcium-activated non-selective cationic current. In contrast to more traditional ideas, these data suggest that the hippocampal region CA1 is capable of active maintenance of memory.
Collapse
Affiliation(s)
- Beate Knauer
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitätsstr, 150, D-44801, Bochum, Germany
| | | | | | | |
Collapse
|
7
|
Carlen PL. Curious and contradictory roles of glial connexins and pannexins in epilepsy. Brain Res 2012; 1487:54-60. [PMID: 22796594 DOI: 10.1016/j.brainres.2012.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Glia play an under-recognized role in epilepsy. This review examines the involvement of glial connexins (Cxs) and pannexins (Panxs), proteins which form gap junctions and membrane hemichannels (connexins) and hemichannels (pannexins), in epilepsy. These proteins, particularly glial Cx43, have been shown to be upregulated in epileptic brain tissue. In a cobalt model of in vitro seizures, seizures increased Panxs1 and 2 and Cx43 expression, and remarkably reorganized the interrelationships between their mRNA levels (transcriptome) which then became statistically significant. Gap junctions are highly implicated in synchronous seizure activity. Blocking gap junctional communication (GJC) is often anticonvulsant, and assumed to be due to blocking gap junctionally-medicated electrotonic coupling between neurons. However, in organotypic hippocampal slice cultures, connexin43 specific peptides, which attenuate GJC possibly by blocking connexon docking, diminished spontaneous seizures. Glia have many functions including extracellular potassium redistribution, in part via gap junctions, which if blocked, can be seizuregenic. Glial gap junctions are critical for the delivery of nutrients to neurons, which if interrupted, can depress seizure activity. Other functions of glia possibly related to epileptogenesis are mentioned including anatomic reorganization in chronic seizure models greatly increasing the overlapping domains of glial processes, changes in neurotransmitter re-uptake, and possible glial generation of currents and fields during seizure activity. Finally there is recent evidence for Cx43 hemichannels and Panx1 channels in glial membranes which could play a role in brain damage and seizure activity. Although glial Cxs and Panxs are increasingly recognized as contributing to fundamental mechanisms of epilepsy, the data are often contradictory and controversial, requiring much more research. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Peter L Carlen
- Toronto Western Research Institute, Epilepsy Program, University Health Network, Toronto, Ontario, Canada M5T2S8.
| |
Collapse
|
8
|
Campbell SL, Buckingham SC, Sontheimer H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 2012; 53:1360-70. [PMID: 22709330 DOI: 10.1111/j.1528-1167.2012.03557.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Patients with gliomas frequently present with seizures, but the factors associated with seizure development are still poorly understood. In this study, we assessed peritumoral synaptic network activity in a glioma animal model and tested the contribution of aberrant glutamate release from gliomas on glioma-associated epileptic network activity. METHODS In vitro brain slices were made from glioma-implanted mice. Using extracellular field recordings, we analyzed peritumoral epileptiform activity induced by Mg(2+)-free medium in slices from tumor-bearing animals and sham-operated controls. We assessed the effect of sulfasalazine (SAS), a blocker of system and glutamate release, on spontaneous and evoked activity in tumor-associated slices. KEY FINDINGS Tumor-associated cortical networks were hyperexcitable. The onset latency of Mg(2+)-free-induced epileptiform activity was significantly shorter in tumor-bearing slices, and the incidence of Mg(2+)-free-induced ictal-like events was higher. Block of glutamate release from system decreased the response area of evoked activity and completely blocked Mg(2+)-free-induced ictal-like, but not interictal-like events. SIGNIFICANCE Control of seizures in patients with gliomas is an essential component of clinical management; therefore, understanding the origin of seizures is vital. This work provides evidence that peritumoral synaptic network activity is disrupted by tumor masses resulting in network excitability. We show that blocking glutamate release via system with SAS, a drug already approved by the U.S. Food and Drug Administration (FDA), can inhibit Mg(2+)-free-induced ictal-like epileptiform events similar to other chemicals used to decrease seizure activity. We, therefore, suggest that further studies should consider SAS a promising agent to aid in the treatment of seizures associated with gliomas.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
9
|
Wu XX, Shuai JW. Multistability in a neuron model with extracellular potassium dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061911. [PMID: 23005131 DOI: 10.1103/physreve.85.061911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/24/2012] [Indexed: 06/01/2023]
Abstract
Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na{+}-K{+} pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K{+}]{o} modulation on neuronal activities.
Collapse
Affiliation(s)
- Xing-Xing Wu
- Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, People's Republic of China
| | | |
Collapse
|
10
|
Tang Y, Durand D. A tunable support vector machine assembly classifier for epileptic seizure detection. EXPERT SYSTEMS WITH APPLICATIONS 2012; 39:3925-3938. [PMID: 22563146 PMCID: PMC3341176 DOI: 10.1016/j.eswa.2011.08.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Automating the detection of epileptic seizures could reduce the significant human resources necessary for the care of patients suffering from intractable epilepsy and offer improved solutions for closed-loop therapeutic devices such as implantable electrical stimulation systems. While numerous detection algorithms have been published, an effective detector in the clinical setting remains elusive. There are significant challenges facing seizure detection algorithms. The epilepsy EEG morphology can vary widely among the patient population. EEG recordings from the same patient can change over time. EEG recordings can be contaminated with artifacts that often resemble epileptic seizure activity. In order for an epileptic seizure detector to be successful, it must be able to adapt to these different challenges. In this study, a novel detector is proposed based on a support vector machine assembly classifier (SVMA). The SVMA consists of a group of SVMs each trained with a different set of weights between the seizure and non-seizure data and the user can selectively control the output of the SVMA classifier. The algorithm can improve the detection performance compared to traditional methods by providing an effective tuning strategy for specific patients. The proposed algorithm also demonstrates a clear advantage over threshold tuning. When compared with the detection performances reported by other studies using the publicly available epilepsy dataset hosted by the University of BONN, the proposed SVMA detector achieved the best total accuracy of 98.72%. These results demonstrate the efficacy of the proposed SVMA detector and its potential in the clinical setting.
Collapse
Affiliation(s)
- Y Tang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
11
|
Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia 2012; 60:1203-14. [DOI: 10.1002/glia.22317] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
|
12
|
Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp Neurol 2012; 235:246-55. [PMID: 22361023 DOI: 10.1016/j.expneurol.2012.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/24/2011] [Accepted: 02/06/2012] [Indexed: 01/28/2023]
Abstract
Recent evidence suggests that astrocytes may be a potential new target for the treatment of epilepsy. The glial water channel aquaporin-4 (AQP4) is expressed in astrocytes, and along with the inwardly-rectifying K(+) channel K(ir)4.1 is thought to underlie the reuptake of H(2)O and K(+) into glial cells during neural activity. Previous studies have demonstrated increased seizure duration and slowed potassium kinetics in AQP4(-/-) mice, and redistribution of AQP4 in hippocampal specimens from patients with chronic epilepsy. However, the regulation and role of AQP4 during epileptogenesis remain to be defined. In this study, we examined the expression of AQP4 and other glial molecules (GFAP, K(ir)4.1, glutamine synthetase) in the intrahippocampal kainic acid (KA) model of epilepsy and compared behavioral and histologic outcomes in wild-type mice vs. AQP4(-/-) mice. Marked and prolonged reduction in AQP4 immunoreactivity on both astrocytic fine processes and endfeet was observed following KA status epilepticus in multiple hippocampal layers. In addition, AQP4(-/-) mice had more spontaneous recurrent seizures than wild-type mice during the first week after KA SE as assessed by chronic video-EEG monitoring and blinded EEG analysis. While both genotypes exhibited similar reactive astrocytic changes, granule cell dispersion and CA1 pyramidal neuron loss, there were an increased number of fluorojade-positive cells early after KA SE in AQP4(-/-) mice. These results indicate a marked reduction of AQP4 following KA SE and suggest that dysregulation of water and potassium homeostasis occurs during early epileptogenesis. Restoration of astrocytic water and ion homeostasis may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Darrin J Lee
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Durand DM, Park EH, Jensen AL. Potassium diffusive coupling in neural networks. Philos Trans R Soc Lond B Biol Sci 2010; 365:2347-62. [PMID: 20603356 DOI: 10.1098/rstb.2010.0050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional neural networks are characterized by many neurons coupled together through synapses. The activity, synchronization, plasticity and excitability of the network are then controlled by its synaptic connectivity. Neurons are surrounded by an extracellular space whereby fluctuations in specific ionic concentration can modulate neuronal excitability. Extracellular concentrations of potassium ([K(+)](o)) can generate neuronal hyperexcitability. Yet, after many years of research, it is still unknown whether an elevation of potassium is the cause or the result of the generation, propagation and synchronization of epileptiform activity. An elevation of potassium in neural tissue can be characterized by dispersion (global elevation of potassium) and lateral diffusion (local spatial gradients). Both experimental and computational studies have shown that lateral diffusion is involved in the generation and the propagation of neural activity in diffusively coupled networks. Therefore, diffusion-based coupling by potassium can play an important role in neural networks and it is reviewed in four sections. Section 2 shows that potassium diffusion is responsible for the synchronization of activity across a mechanical cut in the tissue. A computer model of diffusive coupling shows that potassium diffusion can mediate communication between cells and generate abnormal and/or periodic activity in small (section sign 3) and in large networks of cells (section sign 4). Finally, in section sign 5, a study of the role of extracellular potassium in the propagation of axonal signals shows that elevated potassium concentration can block the propagation of neural activity in axonal pathways. Taken together, these results indicate that potassium accumulation and diffusion can interfere with normal activity and generate abnormal activity in neural networks.
Collapse
Affiliation(s)
- Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
14
|
Kraglund N, Andreasen M, Nedergaard S. Differential influence of non-synaptic mechanisms in two in vitro models of epileptic field bursts. Brain Res 2010; 1324:85-95. [PMID: 20153738 DOI: 10.1016/j.brainres.2010.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 12/26/2022]
Abstract
Non-synaptic interactions are known to promote epileptiform activity through mechanisms that have primarily been studied in one particular in vitro model (low Ca(2+) model). Here we characterize another non-synaptic model, where ictal-like field bursts are induced in the CA1 area of rat hippocampal slices by exposure to Cs(+) (4-5mM) together with blockers of fast chemical synaptic transmission, and compare it with the low Ca(2+) model. The Cs-induced field bursts were blocked by 1 microM tetrodotoxin, but persisted in the presence of 200 microM Cd(2+) or 300 microM Ni(2+). Hyperosmotic condition (addition of 30 mM sucrose), reduced burst amplitude, but, unlike field bursts induced by 0mM Ca(2+)/5.25 mM K(+), sucrose had no effect on frequency or duration. Intracellular alkalinization-acidification sequence induced by NH(4)Cl potentiated and blocked, respectively, the field bursts. Octanol (100-250 microM) blocked all activity in most experiments. A quantitative comparison of three gap junction antagonists (carbenoxolone (100 microM), quinidine (100-250 microM), and endothelin-3 (1-2 microM)) indicated that gap junction communication is implicated in both models. However, endothelin-3 had selective effect on the low Ca(2+)-induced field burst. The data suggest that extracellular space-dependent processes, including field effects, significantly contribute to ongoing field burst activity, whereas initiation of a field burst can occur with or without the aid of such interactions, depending on the level of neuronal excitability. Gap junctions seem to have a general role in initiating field bursts. However, the contribution to this effect from neuronal versus glial connexin types differs in the two epileptic models studied.
Collapse
Affiliation(s)
- Nikolaj Kraglund
- Department of Physiology and Biophysics, Aarhus University, Arhus C, Denmark
| | | | | |
Collapse
|
15
|
Feng ZY, Zheng XJ, Wang J. Effects of carnosine on the evoked potentials in hippocampal CA1 region. J Zhejiang Univ Sci B 2009; 10:505-11. [PMID: 19585668 DOI: 10.1631/jzus.b0820370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To directly examine the effects of carnosine on neuronal excitation and inhibition in rat hippocampus in vivo. METHODS Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. RESULTS In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of (-aminobutyric acid(A) (GABA(A)) antagonist picrotoxin, carnosine decreased paired-pulse stimulating depression significantly. However, no significant change was observed in the spontaneous field potentials during the application of carnosine. CONCLUSION The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.
Collapse
Affiliation(s)
- Zhou-Yan Feng
- Key Lab of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310003, China.
| | | | | |
Collapse
|
16
|
The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol 2009; 258:219-28. [PMID: 19490858 DOI: 10.1016/j.jtbi.2009.01.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 01/24/2009] [Accepted: 01/30/2009] [Indexed: 11/22/2022]
Abstract
Experimental evidences point out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular ions) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K(+)](o) and a decrease of extracellular calcium concentration [Ca(2+)](o) which raises the neuronal excitability. However, whether the high [K(+)](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K(+)](o) and zero [Ca(2+)](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na(+)-K(+) pump, ion diffusion and glial buffering. Within these conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na(+)-K(+) pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K(+) dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K(+)](o), transiting to an elevated state of neuronal excitability. Effects of high [K(+)](o) are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K(+)](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K(+)](o) by outward K(+) flow depresses K(+) currents in a positive feedback way. At the last stage, due to the depression of K(+) currents, the Na(+)-K(+) pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K(+)](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.
Collapse
|
17
|
Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 2009; 26:159-70. [PMID: 19169801 DOI: 10.1007/s10827-008-0132-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/17/2008] [Accepted: 11/25/2008] [Indexed: 11/29/2022]
Abstract
In these companion papers, we study how the interrelated dynamics of sodium and potassium affect the excitability of neurons, the occurrence of seizures, and the stability of persistent states of activity. In this first paper, we construct a mathematical model consisting of a single conductance-based neuron together with intra- and extracellular ion concentration dynamics. We formulate a reduction of this model that permits a detailed bifurcation analysis, and show that the reduced model is a reasonable approximation of the full model. We find that competition between intrinsic neuronal currents, sodium-potassium pumps, glia, and diffusion can produce very slow and large-amplitude oscillations in ion concentrations similar to what is seen physiologically in seizures. Using the reduced model, we identify the dynamical mechanisms that give rise to these phenomena. These models reveal several experimentally testable predictions. Our work emphasizes the critical role of ion concentration homeostasis in the proper functioning of neurons, and points to important fundamental processes that may underlie pathological states such as epilepsy.
Collapse
Affiliation(s)
- John R Cressman
- Department of Physics and Astronomy, The Center for Neural Dynamics, and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
| | | | | | | | | |
Collapse
|
18
|
Durand DM, Park EY. Diffusive coupling can induce synchronized periodic activity in neural networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:3677-8. [PMID: 19163508 DOI: 10.1109/iembs.2008.4650005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diffusive coupling also known as nearest-neighbor coupling is a common form of coupling but its role in the behavior of neural circuits is unclear. Previous experimental and theoretical studies have shown that potassium lateral diffusion coupling (i.e., diffusive coupling) was responsible for synchronization of neuronal activity. We tested the hypothesis that potassium lateral diffusion coupling is required to generate periodic epileptiform activity in a zero-Ca(2+) CA1 pyramidal neuron network model. The simulation results show that potassium lateral diffusion coupling is crucial for establishing a periodic synchronized epileptiform activity similar to that observed in experimental preparations. This results suggest that potassium lateral diffusion coupling - a physiological realization of the concept of diffusive coupling - can play a role in network behavior.
Collapse
Affiliation(s)
- D M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, OH, USA
| | | |
Collapse
|
19
|
Abstract
Diffusive coupling (nearest-neighbor coupling) is the most common type of coupling present in many systems. Previous experimental and theoretical studies have shown that potassium lateral diffusion coupling (i.e., diffusive coupling) can be responsible for synchronization of neuronal activity. Recent in vivo experiments carried out with anesthetized rat hippocampus suggested that the extracellular potassium could play an important role in the generation of a novel type of epileptiform nonsynaptic activity. Yet, the role of potassium in the generation of seizures remains controversial. We tested the hypothesis that potassium lateral diffusion coupling is responsible for the coupling mechanisms for network periodicity in a nonsynaptic model of epilepsy in vivo using a CA1 pyramidal neuron network model The simulation results show that 1), potassium lateral diffusion coupling is crucial for establishing epileptiform activity similar to that generated experimentally; and 2), there exists a scaling relation between the critical coupling strength and the number of cells in the network. The results not only agree with the theoretical prediction, but strongly suggest that potassium lateral diffusion coupling, a physiological realization of the concept of diffusive coupling, can play an important role in entraining periodicity in a nonsynaptic neural network.
Collapse
|
20
|
van Drongelen W, Lee HC, Stevens RL, Hereld M. propagation of seizure-like activity in a model of neocortex. J Clin Neurophysiol 2007; 24:182-8. [PMID: 17414974 DOI: 10.1097/wnp.0b013e318039b4de] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Seizures in pediatric epilepsy are often associated with spreading, repetitive bursting activity in neocortex. The authors examined onset and propagation of seizure-like activity using a computational model of cortical circuitry. The model includes two pyramidal cell types and four types of inhibitory interneurons. Each neuron is represented by a multicompartmental model with biophysically realistic ion channels. The authors determined the role of bursting neurons and found that their capability of driving network oscillations is most prominent in networks with either weak or relatively strong excitatory synaptic coupling. Synaptic coupling strength was varied in a separate set of simulations to examine its role in network bursting. Oscillations both between cortical layers (vertical oscillations) and between cortical areas (horizontal oscillations) emerge at moderate excitatory coupling strengths. For horizontal propagation, existence of a fast-conducting fiber system and its properties are critical. Seizure-like oscillatory activity may originate from single neurons or small networks, and that activity may propagate in two principal fashions: one that can be represented by a unidirectional (pacemaker)-type process and the other as multi- or bidirectional propagating waves. The frequency of the bursting patterns relates to underlying propagating activity that can either sustain or disrupt the ongoing oscillation.
Collapse
Affiliation(s)
- Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637-1470, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Epilepsy comprises a group of disorders characterized by the periodic occurrence of seizures, and pathologic specimens from patients with temporal lobe epilepsy demonstrate marked reactive gliosis. Since recent studies have implicated glial cells in novel physiological roles in the CNS, such as modulation of synaptic transmission, it is plausible that glial cells may have a functional role in the hyperexcitability characteristic of epilepsy. Indeed, alterations in distinct astrocyte membrane channels, receptors and transporters have all been associated with the epileptic state. This review integrates the current evidence regarding astroglial dysfunction in epilepsy and the potential underlying mechanisms of hyperexcitability. Functional understanding of the cellular and molecular alterations of astroglia-dependent hyperexcitability will help to clarify the physiological role of astrocytes in neural function as well as lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, Irvine, Irvine, California, USA
| | | |
Collapse
|