1
|
Zierath D, Mizuno S, Barker-Haliski M. Frontline Sodium Channel-Blocking Antiseizure Medicine Use Promotes Future Onset of Drug-Resistant Chronic Seizures. Int J Mol Sci 2023; 24:4848. [PMID: 36902275 PMCID: PMC10003379 DOI: 10.3390/ijms24054848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The mechanisms of treatment-resistant epilepsy remain unclear. We have previously shown that frontline administration of therapeutic doses of lamotrigine (LTG), which preferentially inhibits the fast-inactivation state of sodium channels, during corneal kindling of mice promotes cross-resistance to several other antiseizure medicines (ASMs). However, whether this phenomenon extends to monotherapy with ASMs that stabilize the slow inactivation state of sodium channels is unknown. Therefore, this study assessed whether lacosamide (LCM) monotherapy during corneal kindling would promote future development of drug-resistant focal seizures in mice. Male CF-1 mice (n = 40/group; 18-25 g) were administered an anticonvulsant dose of LCM (4.5 mg/kg, i.p.), LTG (8.5 mg/kg, i.p.), or vehicle (0.5% methylcellulose) twice daily for two weeks during kindling. A subset of mice (n = 10/group) were euthanized one day after kindling for immunohistochemical assessment of astrogliosis, neurogenesis, and neuropathology. The dose-related antiseizure efficacy of distinct ASMs, including LTG, LCM, carbamazepine, levetiracetam, gabapentin, perampanel, valproic acid, phenobarbital, and topiramate, was then assessed in the remaining kindled mice. Neither LCM nor LTG administration prevented kindling: 29/39 vehicle-exposed mice were kindled; 33/40 LTG-exposed mice were kindled; and 31/40 LCM-exposed mice were kindled. Mice administered LCM or LTG during kindling became resistant to escalating doses of LCM, LTG, and carbamazepine. Perampanel, valproic acid, and phenobarbital were less potent in LTG- and LCM-kindled mice, whereas levetiracetam and gabapentin retained equivalent potency across groups. Notable differences in reactive gliosis and neurogenesis were also appreciated. This study indicates that early, repeated administration of sodium channel-blocking ASMs, regardless of inactivation state preference, promotes pharmacoresistant chronic seizures. Inappropriate ASM monotherapy in newly diagnosed epilepsy may thus be one driver of future drug resistance, with resistance being highly ASM class specific.
Collapse
Affiliation(s)
| | | | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Shishmanova-Doseva M. Protective effect of lacosamide and topiramate treatment against Pentylenetetrazole-induced kindling and associated cognitive dysfunction in rats. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e96185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment is considered the most common comorbidity in epilepsy. The aim of the present study was to explore the effects of long-term treatment with lacosamide and topiramate on epileptogenesis and related cognitive dysfunction in an experimental model of pentylenetetrazole (PTZ)-induced kindling. The latter was induced by the repeated administration of subconvulsive dose of PTZ (40 mg/kg, s.c.) on every alternate day for 8–9 weeks. Both drugs were applied daily in a dose of 10 mg/kg p.o. 30 min before PTZ injection. To assess behavioral comorbidities all rats underwent one active and one passive avoidance tests. The results show that lacosamide significantly suppressed the progression of kindling, while the effect of topiramate was not so pronounced on seizure development. Long-term treatment with both antiepileptic drugs managed to ameliorate the kindling-associated impairment of learning and memory. Lacosamide and topiramate improved active and passive learning abilities and facilitated the formation of short- and long-term memory traces. Both drugs failed to prevent the hyperactivity associated with epilepsy.
Collapse
|
3
|
Kart PÖ, Gürgen SG, Esenülkü G, Dilber B, Yıldız N, Yazar U, Sarsmaz HY, Topsakal AS, Kamaşak T, Arslan EA, Şahin S, Cansu A. An Investigation of the Effects of Chronic Zonisamide, Sultiam, Lacosamide, Clobazam, and Rufinamide Antiseizure Drugs on Foliculogenesis in Ovarian Tissue in Prepubertal Non-Epileptic Rats. Int J Dev Neurosci 2022; 82:436-446. [PMID: 35680420 DOI: 10.1002/jdn.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
We aimed to determine the morphological and histological effects of zonisamide, sultiam, lacosamide, clobazam, and rufinamide on ovarian folliculogenesis in rats. Sixty female Wistar rats were equally divided into 6 experimental groups, including control group, zonisamide, sultiam, lacosamide, clobazam, and rufinamide were administered by gavage for 90 days. According to the daily vaginal smears of the rats in the proestrus and diester phases of the estrus cycle, their ovaries were removed and placed in the fixation solution. Immunohistochemical and apoptosis staining protocols were applied. The number of healthy follicles in the control group was found to be statistically significantly higher when compared to the antiseizure drug groups (p<0.001). The number of corpus luteum was found to be statistically significantly lower in the control group when compared with the anti-seizure drug groups (p<0.001). There was a significant difference in the number of TUNEL positive apoptotic follicles between the control and drug groups (p<0.001). There was a significant difference in the number of TUNEL positive apoptotic follicles between the control and drug groups (p<0.001). HSCORE, immunohistochemical EGF, IGF-1 and GDF-9 staining, a very strong immunoreaction was observed in the ovarian multilaminar primary follicle granulosa cells and oocytes in the control group (p<0.001), and an immunoreaction ranging from weak to medium was observed in the antiseizure drug groups. Long-term anti-seizure drug therapy with zonisamide, sultiam, lacosamide, clobazam, and rufinamide from prepubertal to adulthood causes apoptosis and disruption of folliculogenesis in the ovarian follicles of nonepileptic rats.
Collapse
Affiliation(s)
- Pınar Özkan Kart
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa
| | - Gülnur Esenülkü
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Beril Dilber
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Nihal Yıldız
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Uğur Yazar
- Department of Neurosurgery, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Hayrunnisa Yeşil Sarsmaz
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa
| | - Ali Samet Topsakal
- Department of Neurosurgery, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Tülay Kamaşak
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Elif Acar Arslan
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Sevim Şahin
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Ali Cansu
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| |
Collapse
|
4
|
Çarçak N, Karanfil C, Akat Ş, Akman Ö, Onat F. The effect of chronic treatment with sodium channel blocker lacosamide on early development of absence seizures in genetic absence epilepsy rats. Epilepsy Res 2022; 182:106896. [DOI: 10.1016/j.eplepsyres.2022.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
|
5
|
Khateb M, Bosak N, Herskovitz M. The Effect of Anti-seizure Medications on the Propagation of Epileptic Activity: A Review. Front Neurol 2021; 12:674182. [PMID: 34122318 PMCID: PMC8191738 DOI: 10.3389/fneur.2021.674182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The propagation of epileptiform events is a highly interesting phenomenon from the pathophysiological point of view, as it involves several mechanisms of recruitment of neural networks. Extensive in vivo and in vitro research has been performed, suggesting that multiple networks as well as cellular candidate mechanisms govern this process, including the co-existence of wave propagation, coupled oscillator dynamics, and more. The clinical importance of seizure propagation stems mainly from the fact that the epileptic manifestations cannot be attributed solely to the activity in the seizure focus itself, but rather to the propagation of epileptic activity to other brain structures. Propagation, especially when causing secondary generalizations, poses a risk to patients due to recurrent falls, traumatic injuries, and poor neurological outcome. Anti-seizure medications (ASMs) affect propagation in diverse ways and with different potencies. Importantly, for drug-resistant patients, targeting seizure propagation may improve the quality of life even without a major reduction in simple focal events. Motivated by the extensive impact of this phenomenon, we sought to review the literature regarding the propagation of epileptic activity and specifically the effect of commonly used ASMs on it. Based on this body of knowledge, we propose a novel classification of ASMs into three main categories: major, minor, and intermediate efficacy in reducing the propagation of epileptiform activity.
Collapse
Affiliation(s)
- Mohamed Khateb
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Moshe Herskovitz
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel.,The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Ugur Yilmaz C, Emik S, Orhan N, Temizyurek A, Atis M, Akcan U, Khodadust R, Arican N, Kucuk M, Gurses C, Ahishali B, Kaya M. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci 2020; 257:118081. [DOI: 10.1016/j.lfs.2020.118081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
|
7
|
Gáll Z, Kelemen K, Mihály I, Salamon P, Miklóssy I, Zsigmond B, Kolcsár M. Role of Lacosamide in Preventing Pentylenetetrazole Kindling-Induced Alterations in the Expression of the Gamma-2 Subunit of the GABAA Receptor in Rats. Curr Mol Pharmacol 2020; 13:251-260. [DOI: 10.2174/1874467213666200102095023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Background:
Epilepsy remains challenging to treat still no etiologic treatment has been identified,
however, some antiepileptic drugs (AEDs) are able to modify the pathogenesis of the disease.
Lacosamide (LCM) has been shown to possess complex anticonvulsant and neuroprotective actions,
being an enhancer of the slow inactivation of voltage-gated sodium channels, and it has the potential to
prevent epileptogenesis. Recent evidence has shown that LCM indirectly improves the function of
GABAA receptors. Receptors at most GABAergic synapses involve the gamma-2 subunit, which contributes
to both phasic and tonic inhibition, and its presence assures benzodiazepine sensitivity. Moreover,
mutant gamma-2 subunits were associated with generalized epilepsy syndromes. In animal models,
the expression of the gamma-2 subunit of the gamma-aminobutyric acid A receptor (GABAAg2) was
shown to be increased in pentylenetetrazole (PTZ)-induced chemical kindling in Wistar rats.
Objective:
This study hypothesized that LCM might affect the kindling process by influencing the
expression of GABAA receptors in the hippocampus.
Methods:
The gene and protein expression levels of the GABAAg2 were studied using RT-qPCR and
immunofluorescent staining.
Results:
It was found that LCM treatment (10 mg/kg i.p. daily for 57 days) reduced the maximal
intensity of the PTZ-induced seizures but did not prevent kindling. On the other hand, LCM treatment
reverted the increase of mRNA expression of GABAAg2 in the hippocampus and prevented the
decrease of GABAAg2 protein in the hippocampal CA1 region.
Conclusion:
LCM could exhibit modulatory effects on the GABAergic system of the hippocampus that
may be independent of the anticonvulsant action.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Krisztina Kelemen
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
| | - István Mihály
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Pál Salamon
- Department of Bioengeneering, Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania
| | - Ildikó Miklóssy
- Department of Bioengeneering, Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania
| | - Brigitta Zsigmond
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Melinda Kolcsár
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| |
Collapse
|
8
|
Abstract
Focal-onset seizures are among the most common forms of seizures in children and adolescents and can be caused by a wide diversity of acquired or genetic etiologies. Despite the increasing array of antiseizure drugs available, treatment of focal-onset seizures in this population remains problematic, with as many as one-third of children having seizures refractory to medications. This review discusses contemporary concepts in focal seizure classification and pathophysiology and describes the antiseizure medications most commonly chosen for this age group. As antiseizure drug efficacy is comparable in children and adults, here we focus on pharmacokinetic aspects, drug-drug interactions, and side effect profiles. Finally, we provide some suggestions for choosing the optimal medication for the appropriate patient.
Collapse
Affiliation(s)
- Clare E Stevens
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
9
|
Tchekalarova J, Atanasova D, Kortenska L, Lazarov N, Shishmanova-Doseva M, Galchev T, Marinov P. Agomelatine alleviates neuronal loss through BDNF signaling in the post-status epilepticus model induced by kainic acid in rat. Brain Res Bull 2019; 147:22-35. [PMID: 30738136 DOI: 10.1016/j.brainresbull.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, we have reported that while agomelatine (Ago) is unable to prevent development of epilepsy it exerts a strong neuroprotective and anti-inflammatory response in the KA post-status epilepticus (SE) rat model. In the present study, we aimed to explore whether the brain-derived neurotrophic factor (BDNF) in the hippocampus is involved in the neuroprotective effect of Ago against the KA-induced SE and epileptiform activity four months later in rats. Lacosamide (LCM) was used as a positive control. The EEG-recorded seizure activity was also evaluated in two treatment protocols. In Experiment#1, Ago given repeatedly at a dose of 40 mg/kg during the course of SE was unable neither to modify EEG-recorded epileptiform activity nor the video- and EEG-recorded spontaneous seizures four months later compared to LCM (50 mg/kg). However, both Ago and LCM inhibited the expression of BDNF in the mossy fibers and also prevented neuronal loss in the dorsal hippocampal and the piriform cortex after SE. In Experiment#2, acute injection of Ago and LCM on epileptic rats, characterized by high seizure rates, did not prevent EEG-recorded paroxysmal events while only LCM decreased either absolute or relative powers of gamma (28-60 Hz) and high (HI) (60-120 Hz) frequency bands to baseline in the frontal and parietal cortex, respectively. Our results suggest that the protection against neuronal loss in specific limbic regions and overexpressed BDNF in the mossy fibers resulting from the repeated treatment with Ago and LCM, respectively, during SE is not a prerequisite for alleviation of epileptogenesis and development of epilepsy. In addition, a reduction of gamma and HI bands in the frontal and parietal cortex is not associated with EEG-recorded paroxysmal events after acute injection of LCM.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| | | | | | - Pencho Marinov
- Institute of Information and Communication Technologies, BAS, Sofia, Bulgaria
| |
Collapse
|
10
|
Lacosamide Reduces Seizure Severity but Increases Seizure Frequency in PTZ-Kindled Rats. ACTA MEDICA MARISIENSIS 2017. [DOI: 10.1515/amma-2017-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective: This study evaluated the anticonvulsant action of lacosamide (LCS), a novel drug that was recently approved for the treatment of partial or secondarily generalized seizures, using an animal model of generalized epilepsy induced by repetitive pentylenetetrazole (PTZ) administration in rats. The main goal was to evaluate the behavioral pattern of lacosamide action by classifying seizures according to a modi Racine-scale. Furthermore, the reproducibility of the win-PTZ kindling model of epilepsy, a recently described variant of the standard PTZ-kindling model, was also assessed.
Methods: Adult male Wistar rats (n=16) were divided into two groups and underwent the win-PTZ-kindling protocol in two independent trials. After finishing the kindling procedure, all animals, which presented stage 5 seizures were tested for the anticonvulsant action of lacosamide at three different doses (3, 10, and 30 mg/kg).
Results: The maximal severity of seizures decreased and the latency to stage 3-5 seizures increased when the animals were treated with lacosamide at a single dose of 10 mg/kg compared to saline pretreatment (p < 0.05), both parameter reflecting an anticonvulsant action of the drug. Unfortunately, the number of stage 3-5 seizures also increased, but not significantly. The win-PTZ kindling model showed an adequate reproducibility between different trials, however, the number of fully kindled rats was lower than previously reported.
Conclusions: Lacosamide showed a convincing anticonvulsant action in the win-PTZ kindling model of epilepsy by preventing the generalization of seizures. The win-PTZ kindling model was proved to be useful for studying epileptogenesis and the anticonvulsant action of drugs.
Collapse
|
11
|
Newey CR, Le NM, Ahrens C, Sahota P, Hantus S. The Safety and Effectiveness of Intravenous Lacosamide for Refractory Status Epilepticus in the Critically Ill. Neurocrit Care 2017; 26:273-279. [PMID: 27844464 DOI: 10.1007/s12028-016-0322-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Status epilepticus (SE) often does not respond to initial treatment. A second-line agent with a less established safety and efficacy profile is then required. This study examined the safety of intravenous (IV) lacosamide (LCM) in a critically ill population and obtained an estimate of effectiveness in patients with refractory SE on continuous video EEG monitoring (cEEG). METHODS Retrospective review of critically ill patients in SE on cEEG treated with IV LCM from June 2009 to April 2011. RESULTS Eighty-four patients in SE (43 F/41 M), mean age 59.6 years, were identified; and 59.5 % had nonconvulsive SE. The most common etiologies were ischemic and hemorrhagic strokes. There were no significant changes in serial blood pressure monitoring, PR prolongation, aspartate aminotransferase (AST), or creatinine pre- and post-LCM. There was a significant increase in alanine aminotransferase (ALT) from days 1-7 (p = 0.031). Fifty-one patients were LCM-naïve. In these patients, cessation of SE on cEEG after LCM occurred in 15.7, 25.5, 58.8, and 82.4 % by 4, 12, 24, and 48 h, respectively. CONCLUSION IV LCM appears safe short term in critically ill patients with SE. The retrospective estimate of effectiveness for LCM appears promising for management in SE. Prospective, randomized controlled studies are needed to better determine the role of LCM in treating SE.
Collapse
Affiliation(s)
- C R Newey
- Department of Neurology, University of Missouri, 5 Hospital Drive, CE 540, Columbia, MO, 65211, USA.
| | - N M Le
- Pediatric Neurology, Orlando Health System, 7485 Sand Lake Commons Blvd, Orlando, FL, 32819, USA
| | - C Ahrens
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195-5245, USA
| | - P Sahota
- Department of Neurology, University of Missouri, 5 Hospital Drive, CE 540, Columbia, MO, 65211, USA
| | - S Hantus
- Cerebrovascular Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195-5245, USA.,Epilepsy Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195-5245, USA
| |
Collapse
|
12
|
Gáll Z, Vancea S. Distribution of lacosamide in the rat brain assessed by in vitro slice technique. Arch Pharm Res 2017; 41:79-86. [PMID: 29019022 DOI: 10.1007/s12272-017-0966-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (Kp) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (Vu,brain = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (Kp,uu,brain = 0.42 vs. Kp = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.
Collapse
Affiliation(s)
- Zsolt Gáll
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania.
| | - Szende Vancea
- Faculty of Pharmacy, Department of Physical Chemistry, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania
| |
Collapse
|
13
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Poppe L, De Meulenaere V, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. The effect of neuropeptide FF in the amygdala kindling model. Acta Neurol Scand 2016; 134:181-8. [PMID: 26503695 DOI: 10.1111/ane.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Neuropeptide FF (NPFF) and its receptors (NPFF1 R and NPFF2 R) are differentially distributed throughout the central nervous system. NPFF reduces cortical excitability in rats when administered intracerebroventricularly (i.c.v.), and both NPFF and NPFF1 R antagonists attenuate pilocarpine-induced limbic seizures. In this study, our aim was to determine whether NPFF exerts anticonvulsant or anti-epileptogenic effects in the rat amygdala kindling model for temporal lobe seizures. METHODS Male Wistar rats were implanted with a recording/stimulation electrode in the right amygdala and a cannula in the left lateral ventricle. In a first group of animals, the afterdischarge threshold (ADT) was determined after a single i.c.v. infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; n = 10). Subsequently, daily infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; i.c.v.; n = 9) was performed, followed by a kindling stimulus (ADT+200 μA). Afterdischarge duration and seizure severity were evaluated after every kindling stimulus. A second group of rats (n = 7) were fully kindled, and the effect of saline or a high dose of NPFF (10 nmol/h for 2 h, i.c.v.) on ADT and the generalized seizure threshold (GST) was subsequently determined. RESULTS In naive rats, NPFF significantly increased the ADT compared to control (435 ± 72 μA vs 131 ± 23 μA [P < 0.05]). When rats underwent daily stimulations above the ADT, NPFF did not delay or prevent kindling acquisition. Furthermore, a high dose of NPFF did not alter ADT or GST in fully kindled rats. CONCLUSIONS I.c.v. administration of NPFF reduced excitability in the amygdala in naive, but not in fully kindled rats, and had no effect on kindling acquisition.
Collapse
Affiliation(s)
- I. Buffel
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - A. Meurs
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J. Portelli
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - R. Raedt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Herdt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - L. Poppe
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Meulenaere
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - W. Wadman
- Swammerdam Institute of Life Sciences; Department of Neurobiology; University of Amsterdam; Amsterdam The Netherlands
| | - F. Bihel
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - M. Schmitt
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - K. Vonck
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J.-J. Bourguignon
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - F. Simonin
- Research Institute of ESBS; CNRS; UMR7242; University of Strasbourg; Illkirch France
| | - I. Smolders
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - P. Boon
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| |
Collapse
|
14
|
Delaunois A, Colomar A, Depelchin BO, Cornet M. Cardiac safety of lacosamide: the non-clinical perspective. Acta Neurol Scand 2015; 132:337-45. [PMID: 25903789 DOI: 10.1111/ane.12413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Lacosamide is indicated for the adjunctive treatment of partial-onset seizures in adult patients. Unlike other sodium channel-blocking antiepileptic drugs, lacosamide selectively enhances sodium channel slow inactivation. Potential effects of lacosamide on cardiac sodium channels and their cardiovascular consequences were comprehensively assessed. This manuscript presents the non-clinical cardiac safety profile of lacosamide. METHODS Lacosamide was tested in vitro on sodium and L-type calcium currents from isolated human atrial myocytes and on hERG-mediated potassium currents from stably transfected HEK293 cells. Cardiac action potentials were recorded in guinea pig ventricular myocytes. In vivo, hemodynamic and ECG parameters were evaluated in anesthetized dogs and monkeys receiving acute cumulative intravenous doses of lacosamide. RESULTS Following intravenous dosing with lacosamide, dose-dependent PR and QRS prolongation and ECG abnormalities (loss of P waves, atrioventricular and intraventricular blocks, junctional premature contractions) were observed in anesthetized dogs and monkeys. In vitro, lacosamide reduced human cardiac sodium currents in a concentration-, voltage- and state-dependent manner. Lacosamide reductions in Vmax in guinea pig myocytes were similar to lamotrigine and carbamazepine. Lacosamide showed no relevant inhibitory effects on hERG and L-type calcium channels and did not prolong QTc in vivo. CONCLUSIONS ECG findings in anesthetized animals correlate well with in vitro sodium channel-related effects and are also consistent with those (PR prolongation, first-degree atrioventricular block) reported in healthy volunteers and patients with epilepsy. Both in vivo and in vitro effects were detected from exposure levels 1.5- to 2-fold above those achieved with the maximum-recommended human lacosamide dose (400 mg/day).
Collapse
Affiliation(s)
- A. Delaunois
- Non-Clinical Development; UCB Biopharma SPRL.; Braine l'Alleud Belgium
| | - A. Colomar
- Non-Clinical Development; UCB Biopharma SPRL.; Braine l'Alleud Belgium
| | - B. O. Depelchin
- Non-Clinical Development; UCB Biopharma SPRL.; Braine l'Alleud Belgium
| | - M. Cornet
- Non-Clinical Development; UCB Biopharma SPRL.; Braine l'Alleud Belgium
| |
Collapse
|
15
|
Palleria C, Coppola A, Citraro R, Del Gaudio L, Striano S, De Sarro G, Russo E. Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis. Expert Opin Pharmacother 2015; 16:2355-71. [PMID: 26328621 DOI: 10.1517/14656566.2015.1084504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) is a syndrome that is often refractory to drug treatment. The effects on specific syndromes are not currently available from the pre-marketing clinical development of new AEDs; this does not allow the prediction of whether new drugs will be more effective in the treatment of some patients. AREAS COVERED We have reviewed all the existing literature relevant to the understanding of a potential effectiveness in MTLE-HS patients for the latest AEDs, namely brivaracetam, eslicarbazepine, lacosamide, perampanel and retigabine also including the most relevant clinical data and a brief description of their pharmacological profile. Records were identified using predefined search criteria using electronic databases (e.g., PubMed, Cochrane Library Database of Systematic Reviews). Primary peer-reviewed articles published up to the 15 June 2015 were included. EXPERT OPINION All the drugs considered have the potential to be effective in the treatment of MTLE-HS; in fact, they possess proven efficacy in animal models; currently considered valuable tools for predicting drug efficacy in TLE. Furthermore, for some of these (e.g., lacosamide and eslicarbazepine) data are already available from post-marketing studies while brivaracetam acting on SV2A like levetiracetam might have the same potential effectiveness with the possibility to be more efficacious considering its ability to inhibit voltage gated sodium channels; finally, perampanel and retigabine are very effective drugs in animal models of TLE.
Collapse
Affiliation(s)
- Caterina Palleria
- a 1 University of Catanzaro, Science of Health Department, School of Medicine , Naples, Italy +39 0 96 13 69 41 91 ; +39 0 96 13 69 41 92 ;
| | - Antonietta Coppola
- b 2 Federico II University, Epilepsy Centre, Reproductive and Odontostomatological Sciences, Department of Neuroscience , Naples, Italy
| | - Rita Citraro
- a 1 University of Catanzaro, Science of Health Department, School of Medicine , Naples, Italy +39 0 96 13 69 41 91 ; +39 0 96 13 69 41 92 ;
| | - Luigi Del Gaudio
- b 2 Federico II University, Epilepsy Centre, Reproductive and Odontostomatological Sciences, Department of Neuroscience , Naples, Italy
| | - Salvatore Striano
- b 2 Federico II University, Epilepsy Centre, Reproductive and Odontostomatological Sciences, Department of Neuroscience , Naples, Italy
| | - Giovambattista De Sarro
- a 1 University of Catanzaro, Science of Health Department, School of Medicine , Naples, Italy +39 0 96 13 69 41 91 ; +39 0 96 13 69 41 92 ;
| | - Emilio Russo
- a 1 University of Catanzaro, Science of Health Department, School of Medicine , Naples, Italy +39 0 96 13 69 41 91 ; +39 0 96 13 69 41 92 ;
| |
Collapse
|
16
|
Behr C, Lévesque M, Ragsdale D, Avoli M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res 2015; 115:8-16. [PMID: 26220372 PMCID: PMC4878889 DOI: 10.1016/j.eplepsyres.2015.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Nearly one third of patients presenting with mesial temporal lobe epilepsy (MTLE), the most prevalent lesion-related epileptic disorder in adulthood, do not respond to currently available antiepileptic medications. Thus, there is a need to identify and characterize new antiepileptic drugs. In this study, we used the pilocarpine model of MTLE to establish the effects of a third generation drug, lacosamide (LCM), on seizures, interictal spikes and high-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz). METHODS Sprague-Dawley rats (250-300 g) were injected with pilocarpine to induce a status epilepticus (SE) that was pharmacologically terminated after 1h. Eight pilocarpine-treated rats were then injected with LCM (30 mg/kg, i.p.) 4h after SE and daily for 14 days. Eight pilocarpine-treated rats were used as controls and treated with saline. Three days after SE, all rats were implanted with bipolar electrodes in the hippocampal CA3 region, entorhinal cortex (EC), dentate gyrus (DG) and subiculum and EEG-video monitored from day 4 to day 14 after SE. RESULTS LCM-treated animals showed lower rates of seizures (0.21 (± 0.11) seizures/day) than controls (2.6 (±0.57), p<0.05), and a longer latent period (LCM: 11 (± 1) days, controls: 6.25 (± 1), p<0.05). Rates of interictal spikes in LCM-treated rats were significantly lower than in controls in CA3 and subiculum (p<0.05). Rates of ripples and fast ripples associated with interictal spikes in CA3 and subiculum as well as rates of fast ripples occurring outside of interictal spikes in CA3 were also significantly lower in LCM-treated animals. In controls, interictal spikes and associated HFOs correlated to seizure clustering, while this was not the case for isolated HFOs. SIGNIFICANCE Our findings show that early treatment with LCM has powerful anti-ictogenic properties in the pilocarpine model of MTLE. These effects are accompanied by decreased rates of interictal spikes and associated HFOs. Isolated HFOs were also modulated by LCM, in a manner that appeared to be unrelated to its antiictogenic effects. These results thus suggest that distinct mechanisms may underlie interictal-associated and isolated HFOs in the pilocarpine model of MTLE.
Collapse
Affiliation(s)
- Charles Behr
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - David Ragsdale
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4.
| |
Collapse
|
17
|
Thompson K, Pohlmann‐Eden B, Campbell LA, Abel H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev 2015; 2015:CD009900. [PMID: 26259048 PMCID: PMC9237755 DOI: 10.1002/14651858.cd009900.pub2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Head injury is a common event and can cause a spectrum of motor and cognition disabilities. A frequent complication is seizures. Antiepileptic drugs (AED) such as phenytoin are often used in clinical practice with the hopes of preventing post-traumatic epilepsy. Whether immediate medical intervention following head trauma with either AEDs or neuroprotective drugs can alter the process of epileptogenesis and lead to a more favorable outcome is currently unknown. This review attempted to address the effectiveness of these treatment interventions. This review updates and expands on the earlier Cochrane review. OBJECTIVES To compare the efficacy of antiepileptic drugs and neuroprotective agents with placebo, usual care or other pharmacologic agents for the prevention of post-traumatic epilepsy in people diagnosed with any severity of traumatic brain injury. SEARCH METHODS We searched The Cochrane Epilepsy Group's specialized register, CENTRAL, MEDLINE, ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform (ICTRP) in January 2015. We searched EMBASE, Biological Abstracts and National Research Register in September 2014 and SCOPUS in December 2013. The Cochrane Epilepsy Group performed handsearches of relevant journals. SELECTION CRITERIA We included randomized controlled trials (RCTs) that include AEDs or neuroprotective agents compared with placebo, another pharmacologic agent or a usual care group. The outcomes measured included a seizure occurring within one week of trauma (early seizure), seizure occurring later than one week post-trauma (late seizure), mortality and any adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study quality and extracted the data. We calculated risk ratios (RR) and 95% confidence intervals (CI) for each outcome. We used random-effects models in the meta-analyses and performed pre-defined subgroup and sensitivity analyses. MAIN RESULTS This review included 10 RCTs (reported in 12 articles) consisting of 2326 participants The methodological quality of the studies varied. The type of intervention was separated into three categories; AED versus placebo or standard care, alternative neuroprotective agent versus placebo or standard care and AED versus other AED. Treatment with an AED (phenytoin or carbamazepine) decreased the risk of early seizure compared with placebo or standard care (RR 0.42, 95% CI 0.23 to 0.73; very low quality evidence). There was no evidence of a difference in the risk of late seizure occurrence between AEDs and placebo or standard care (RR 0.91, 95% CI 0.57 to 1.46; very low quality evidence). There was no evidence of a significant difference in all-cause mortality between AEDs and placebo or standard care (RR 1.08 95% CI 0.79 to 1.46,very low quality of evidence). Only one study looked at other potentially neuroprotective agents (magnesium sulfate) compared with placebo. The risk ratios were: late seizure 1.07 (95% CI 0.53 to 2.17) and all-cause mortality 1.20 (95% CI 0.80 to 1.81). The risk ratio for occurrence of early seizure was not estimable.Two studies looked at comparison of two AEDs (levetiracetam, valproate) with phenytoin used as the main comparator in each study. The risk ratio for all-cause mortality was 0.53 (95% CI 0.30 to 0.94). There was no evidence of treatment benefit of phenytoin compared with another AED for early seizures (RR 0.66, 95% 0.20 to 2.12) or late seizures(RR 0.77, 95% CI 0.46 to 1.30).Only two studies reported adverse events. The RR of any adverse event with AED compared with placebo was 1.65 (95% CI 0.73 to 3.66; low quality evidence). There were insufficient data on adverse events in the other treatment comparisons. AUTHORS' CONCLUSIONS This review found low-quality evidence that early treatment with an AED compared with placebo or standard care reduced the risk of early post-traumatic seizures. There was no evidence to support a reduction in the risk of late seizures or mortality. There was insufficient evidence to make any conclusions regarding the effectiveness or safety of other neuroprotective agents compared with placebo or for the comparison of phenytoin, a traditional AED, with another AED.
Collapse
Affiliation(s)
- Kara Thompson
- Dalhousie UniversityDepartment of MedicineRm 204, Centre for Clinical Research5790 University AvenueHalifaxNSCanadaB3H 1V7
| | | | - Leslie A Campbell
- Dalhousie UniversityDepartment of Community Health and EpidemiologyRoom 415, 5790 University AvenueHalifaxNSCanadaB3K 1V7
| | - Hannah Abel
- Dalhousie UniversityCommunity Health and Epidemiologyc/o Center for Clinical Research4th Floors, 5790 University AvenueHalifaxNSCanadaB3H 1V7
| | | |
Collapse
|
18
|
Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res 2015; 110:189-205. [DOI: 10.1016/j.eplepsyres.2014.11.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
19
|
Pasha I, Kamate M, Suresh DK. Safety of lacosamide in children with refractory partial epilepsy. Saudi Pharm J 2015; 23:556-61. [PMID: 26594123 PMCID: PMC4605901 DOI: 10.1016/j.jsps.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/01/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The study was carried out to investigate the safety of lacosamide on children with refractory partial epilepsy. MATERIALS & METHODS The study was carried out at a tertiary care hospital after obtaining approval from the institutional ethics committee. Patients aged between 5 and 15 years taking oral lacosamide (LCM) tablets that were given orally as an adjunctive anti-epileptic drug were enrolled for assessing safety, tolerability and its effect on the behavioural life at every visit of titration, during the treatment period (3 months) and at 2 follow up visits that were done at monthly intervals. Adverse events reported by caregiver or by investigator were recorded. Patients/caregivers also completed a 25 items on Connor's behavioural rating clinical scale at every visit. RESULTS Out of 531 screened patients, 79 patients with refractory partial epilepsy were enrolled after they fulfilled the inclusion and exclusion criteria. Mean age of the children was 8.84 ± 3.09 years (5-15 years), of which 53 were males and 26 females. The mean age at onset of seizures in males was 6.46 ± 3.57 and in females, 6.38 ± 3.39 years. Seventy-six children of 79, completed 3 months of treatment period showed significant (p < 0.001) decrease in the frequency of seizures, significant improvement in behaviour and showed good tolerability. Three (3.79%) patients dropped out of the study due to hyperactive behaviour, vomiting and lack of seizure control respectively. CONCLUSIONS Lacosamide is a well-tolerated newer antiepileptic drug that is effective in refractory partial epilepsy paediatric patients and concurrently improved patient's behaviour.
Collapse
Affiliation(s)
- Ismail Pasha
- Dept. of Pharmacology, KLE University's College of Pharmacy, Belgaum, Karnataka State, India
| | - Mahesh Kamate
- Dept. of Pediatric Neurology, KLE University's J N Medical College, KLES Prabhakar Kore Hospital, Belgaum, Karnataka State, India
| | - D K Suresh
- Dept. of Pharmacology, Luqman College of Pharmacy, Jevargi Road, Gulbarga, Karnataka State, India
| |
Collapse
|
20
|
Pasha I, Kamate M, Didagi SK. Efficacy and tolerability of lacosamide as an adjunctive therapy in children with refractory partial epilepsy. Pediatr Neurol 2014; 51:509-14. [PMID: 25266613 DOI: 10.1016/j.pediatrneurol.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND A unicentre, prospective study was performed to investigate the efficacy of lacosamide as adjunctive therapy in children with refractory partial epilepsy. METHODS The study was performed at a tertiary care hospital over a period of 30 months between November 2011 and May 2014. Seventy-nine children with refractory partial epilepsy (age 5-15 years) who had failed two or more antiepileptic drugs and in whom lacosamide was used as an add-on drug were enrolled. Lacosamide tablets were administered orally, at a dose of 25 mg for 1 week followed by 50 mg twice daily for the remaining period. Efficacy and tolerability evaluation was performed at every visit of titration, maintenance period (3 months), and two follow-up visits at monthly interval. Electrocardiogram and liver function tests were performed before enrollment and at the end of 3 months of lacosamide therapy. Patient's caregiver or investigator observed adverse events were recorded in a predesigned pro forma. RESULTS A total of 79 patients with uncontrolled partial epilepsy screened from 531 epileptic children were enrolled, after they satisfied the inclusion and exclusion criteria. The mean age of children enrolled was 8.8 ± 3.1 years (range 5-15 years); 53 children (67.0%) were boys. Mean weight of the patients was 24.2 ± 9.8 kg. The mean age at the onset of seizures was 6.4 ± 3.5 years. The mean dose of lacosamide administered was 4.1 mg/kg. Three patients (3.8%) dropped out of the study, because of vomiting, aggressive behavior, and poor response, respectively. Of 76 patients (96.2%) entering the maintenance period, 35 patients (44.3%) were seizure free, 32 patients (40.6%) indicated ≥50% reduction in seizure frequency, 3 patients (3.8%) indicated 25-49% seizure reduction, and 9 patients (11.4%) either had no change in seizure frequency or experience increase in seizure frequency. CONCLUSION Lacosamide is an effective add-on antiepileptic drug for children with refractory partial epilepsy and is well tolerated.
Collapse
Affiliation(s)
- Ismail Pasha
- Department of Clinical Pharmacy, KLE University's College of Pharmacy, Belgaum, Karnataka, India
| | - Mahesh Kamate
- Department of Paediatrics, Child Development Clinic, KLES Prabhakar Kore Hospital, KLE University's J N Medical College, Belgaum, Karnataka, India.
| | - Suresh K Didagi
- Department of Clinical Pharmacy, Luqman College of Pharmacy, Gulbarga, Karnataka, India
| |
Collapse
|
21
|
Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide. Mol Neurobiol 2014; 51:599-609. [PMID: 24944082 DOI: 10.1007/s12035-014-8775-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
The novel antiepileptic drug lacosamide (LCM; SPM927, Vimpat®) has been heralded as having a dual-mode of action through interactions with both the voltage-gated sodium channel and the neurite outgrowth-promoting collapsin response mediator protein 2 (CRMP2). Lacosamide's ability to dampen neuronal excitability through the voltage-gated sodium channel likely underlies its efficacy in attenuating the symptoms of epilepsy (i.e., seizures). While the role of CRMP2 in epilepsy has not been well studied, given the proposed involvement of circuit reorganization in epileptogenesis, the ability of lacosamide to alter CRMP2 function may prove disease modifying. Recently, however, the validity of lacosamide's interaction with CRMP2 has come under scrutiny. In this review, we address the contradictory reports concerning the binding of lacosamide to CRMP2 as well as the ability of lacosamide to directly impact CRMP2 function. Additionally, we address similarly the contradicting reports regarding the potential disease-modifying effect of lacosamide on the development and progression of epilepsy. As the vast majority of antiepileptic drugs influences only the symptoms of epilepsy, the ability to hinder disease progression would be a major breakthrough in efforts to cure or prevent this debilitating syndrome.
Collapse
|
22
|
Affiliation(s)
- Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Beydoun A, D’Souza J, Hebert D, Doty P. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev Neurother 2014; 9:33-42. [DOI: 10.1586/14737175.9.1.33] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Szaflarski JP, Nazzal Y, Dreer LE. Post-traumatic epilepsy: current and emerging treatment options. Neuropsychiatr Dis Treat 2014; 10:1469-77. [PMID: 25143737 PMCID: PMC4136984 DOI: 10.2147/ndt.s50421] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) leads to many undesired problems and complications, including immediate and long-term seizures/epilepsy, changes in mood, behavioral, and personality problems, cognitive and motor deficits, movement disorders, and sleep problems. Clinicians involved in the treatment of patients with acute TBI need to be aware of a number of issues, including the incidence and prevalence of early seizures and post-traumatic epilepsy (PTE), comorbidities associated with seizures and anticonvulsant therapies, and factors that can contribute to their emergence. While strong scientific evidence for early seizure prevention in TBI is available for phenytoin (PHT), other antiepileptic medications, eg, levetiracetam (LEV), are also being utilized in clinical settings. The use of PHT has its drawbacks, including cognitive side effects and effects on function recovery. Rates of recovery after TBI are expected to plateau after a certain period of time. Nevertheless, some patients continue to improve while others deteriorate without any clear contributing factors. Thus, one must ask, 'Are there any actions that can be taken to decrease the chance of post-traumatic seizures and epilepsy while minimizing potential short- and long-term effects of anticonvulsants?' While the answer is 'probably,' more evidence is needed to replace PHT with LEV on a permanent basis. Some have proposed studies to address this issue, while others look toward different options, including other anticonvulsants (eg, perampanel or other AMPA antagonists), or less established treatments (eg, ketamine). In this review, we focus on a comparison of the use of PHT versus LEV in the acute TBI setting and summarize the clinical aspects of seizure prevention in humans with appropriate, but general, references to the animal literature.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yara Nazzal
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura E Dreer
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Shandra A, Shandra P, Kaschenko O, Matagne A, Stöhr T. Synergism of lacosamide with established antiepileptic drugs in the 6-Hz seizure model in mice. Epilepsia 2013; 54:1167-75. [PMID: 23750855 DOI: 10.1111/epi.12237] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Lacosamide (LCM, Vimpat) is an anticonvulsant with a unique mode of action. This provides lacosamide with the potential to act additively or even synergistically with other antiepileptic drugs (AEDs). The objective of this study was to determine the presence of such interactions by isobolographic analysis. METHODS The anticonvulsant effect of LCM in combination with other AEDs including carbamazepine (CBZ), phenytoin (PHT), valproate (VPA), lamotrigine (LTG), topiramate (TPM), gabapentin (GBP), and levetiracetam (LEV) at fixed dose ratios of 1:3, 1:1, and 3:1, was evaluated in the 6-Hz-induced seizure model in mice. In addition, the impact of the combinations of LCM with the other AEDs on motor coordination was assessed in the rotarod test. Finally, AED concentrations were measured in blood and brain to evaluate potential pharmacokinetic drug interactions. KEY FINDINGS All studied AEDs produced dose-dependent anticonvulsant effects against 6-Hz-induced seizures. Combinations of LCM with CBZ, LTG, TPM, GBP, or LEV were synergistic. All other LCM/AED combinations displayed additive effects with a tendency toward synergism. Furthermore, no enhanced adverse effects were observed in the rotarod test by combining LCM with other AEDs. No pharmacokinetic interactions were seen on brain AED concentrations. Coadministration of LCM and TPM led to an increase in plasma levels of LCM, whereas the plasma concentration of PHT was increased by coadministration of LCM. SIGNIFICANCE The synergistic anticonvulsant interaction of LCM with various AEDs, without exacerbation of adverse motor effects, highlights promising properties of LCM as add-on therapy for drug refractory epilepsy.
Collapse
|
26
|
Licko T, Seeger N, Zellinger C, Russmann V, Matagne A, Potschka H. Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia 2013; 54:1176-85. [PMID: 23614482 DOI: 10.1111/epi.12196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE The antiepileptic drug, lacosamide, exerts its therapeutic activity by enhancing slow inactivation of voltage-gated sodium channels. Because putative preventive or disease-modifying effects of drugs may affect epileptogenesis, intrinsic severity, and comorbidities, it is of particular interest to assess the effect of lacosamide on the development of epilepsy and associated cellular alterations. METHODS The effect of lacosamide was evaluated in an electrical rat status epilepticus (SE) model with a 24-day treatment phase following induction of SE. The impact of lacosamide on the development of spontaneous seizures based on continuous video-electroencephalography (EEG) monitoring, as well as the impact on neuronal cell loss and alterations in hippocampal neurogenesis, was assessed. KEY FINDINGS Neither low-dose nor high-dose lacosamide affected the development of spontaneous seizures. A dose-dependent neuroprotective effect of lacosamide with significant reduction of neuronal cell loss was observed in the hippocampal CA1 region, as well as in the piriform cortex. In addition, lacosamide attenuated the impact of SE on the rate of hippocampal cell neurogenesis. Moreover, lacosamide prevented a significant rise in the number of persistent basal dendrites. SIGNIFICANCE Our data do not support an antiepileptogenic effect of lacosamide. However, because lacosamide reduced SE-associated cellular alterations, it would be of interest to determine whether these effects indicate a putative disease-modifying effect of lacosamide in future studies.
Collapse
Affiliation(s)
- Thomas Licko
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Verrotti A, Loiacono G, Pizzolorusso A, Parisi P, Bruni O, Luchetti A, Zamponi N, Cappanera S, Grosso S, Kluger G, Janello C, Franzoni E, Elia M, Spalice A, Coppola G, Striano P, Pavone P, Savasta S, Viri M, Romeo A, Aloisi P, Gobbi G, Ferretti A, Cusmai R, Curatolo P. Lacosamide in pediatric and adult patients: comparison of efficacy and safety. Seizure 2013; 22:210-6. [PMID: 23298605 DOI: 10.1016/j.seizure.2012.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE This multicenter, prospective study investigates the efficacy and safety of lacosamide adjunctive therapy in pediatric and adult patients with uncontrolled epilepsy. METHOD This study was carried out between September 2010 and December 2011 at 16 Italian and 1 German neurologic centers. Lacosamide was added to the baseline therapy at a starting dose of 1 mg/kg/day in patients aged <16 years (group A) and 100 mg daily in subjects aged 16 and older (group B), and titrated to the target dose, ranging from 3 to 12 mg/kg/day or from 100 to 600 mg daily, respectively. After completing the titration period, patients entered a 12-month maintenance period and they were followed up at 3, 6 and 12 months. The primary assessment of efficacy was based on the change from baseline in seizure frequency per 28 days and was evaluated at 3, 6 and 12 months as follows: number and proportion of 100% responders, 50% responders, non-responders and worsening patients. Safety evaluation was also performed at 3, 6 and 12 months. RESULTS A total of 118 patients (59 group A, 59 group B) with uncontrolled generalized and focal epilepsy were enrolled. Patient mean±SD age was 15.9±6.80 years and the age range was 4-38 years. At 3-month evaluation, of 118 treated patients 56 subjects (47.4% group A; 47.4% group B; p=0.8537) experienced at least a 50% reduction in seizure frequency. At 6 and 12-month follow-up, the 50% responders were 57 (52.5% group A; 44.1% group B; p=0.4612) and 51 (47.4% group A; 39% group B; p=0.4573), respectively. Thirty-five subjects (30.5% group A; 28.8% group B; p=1) experienced side effects during the treatment period. The most common adverse events were dyspepsia for group A and dizziness for group B. CONCLUSION Lacosamide may be a useful and safe pharmacological treatment option for both pediatric and adult patients with uncontrolled seizures.
Collapse
|
28
|
Uebachs M, Albus C, Opitz T, Isom L, Niespodziany I, Wolff C, Beck H. Loss of β1 accessory Na+ channel subunits causes failure of carbamazepine, but not of lacosamide, in blocking high-frequency firing via differential effects on persistent Na+ currents. Epilepsia 2012; 53:1959-67. [PMID: 23016711 DOI: 10.1111/j.1528-1167.2012.03675.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE In chronic epilepsy, a substantial proportion of up to 30% of patients remain refractory to antiepileptic drugs (AEDs). An understanding of the mechanisms of pharmacoresistance requires precise knowledge of how AEDs interact with their targets. Many commonly used AEDs act on the transient and/or the persistent components of the voltage-gated Na(+) current (I(NaT) and I(NaP) , respectively). Lacosamide (LCM) is a novel AED with a unique mode of action in that it selectively enhances slow inactivation of fast transient Na(+) channels. Given that functional loss of accessory Na(+) channel subunits is a feature of a number of neurologic disorders, including epilepsy, we examined the effects of LCM versus carbamazepine (CBZ) on the persistent Na(+) current (I(NaP) ), in the presence and absence of accessory subunits within the channel complex. METHODS Using patch-clamp recordings in intact hippocampal CA1 neurons of Scn1b null mice, I(NaP) was recorded using slow voltage ramps. Application of 100 μm CBZ or 300 μm LCM reduced the maximal I(NaP) conductance in both wild-type and control mice. KEY FINDINGS As shown previously by our group in Scn1b null mice, CBZ induced a paradoxical increase of I(NaP) conductance in the subthreshold voltage range, resulting in an ineffective block of repetitive firing in Scn1b null neurons. In contrast, LCM did not exhibit such a paradoxical increase, and accordingly maintained efficacy in blocking repetitive firing in Scn1b null mice. SIGNIFICANCE These results suggest that the novel anticonvulsant LCM maintains activity in the presence of impaired Na(+) channel β(1) subunit expression and thus may offer an improved efficacy profile compared with CBZ in diseases associated with an impaired expression of β sub-units as observed in epilepsy.
Collapse
Affiliation(s)
- Mischa Uebachs
- Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Sirven JI, Noe K, Hoerth M, Drazkowski J. Antiepileptic drugs 2012: recent advances and trends. Mayo Clin Proc 2012; 87:879-89. [PMID: 22958992 PMCID: PMC3538494 DOI: 10.1016/j.mayocp.2012.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 05/02/2012] [Indexed: 12/21/2022]
Abstract
There are now 24 antiepileptic drugs (AEDs) approved for use in epilepsy in the United States by the Food and Drug Administration. A literature search was conducted using PubMed, MEDLINE, and Google for all English-language articles that discuss newly approved AEDs and the use of AEDs in epilepsy in the United States from January 1, 2008, through December 31, 2011. Five new agents were identified that have come onto the market within the past 2 years. Moreover, 3 trends involving AEDs have become clinically important and must be considered by all who treat patients with epilepsy. These trends include issues of generic substitution of AEDs, pharmacogenomics predicting serious adverse events in certain ethnic populations, and the issue of the suicide risk involving the entire class of AEDs. This article discusses the most recent AEDs approved for use in the United States and the 3 important trends shaping the modern medical management of epilepsy.
Collapse
Affiliation(s)
- Joseph I Sirven
- Department of Neurology, Division of Epilepsy, Mayo Clinic, Phoenix, AZ 85054, USA.
| | | | | | | |
Collapse
|
30
|
Thompson K, Pohlmann-Eden B, Campbell LA. Pharmacological treatments for preventing epilepsy following traumatic head injury. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2012. [DOI: 10.1002/14651858.cd009900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:663-681. [PMID: 22939059 DOI: 10.1016/b978-0-444-52899-5.00021-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Roger J Porter
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
32
|
Becerra JL, Ojeda J, Corredera E, Ruiz Giménez J. Review of therapeutic options for adjuvant treatment of focal seizures in epilepsy: focus on lacosamide. CNS Drugs 2011; 25 Suppl 1:3-16. [PMID: 22141347 DOI: 10.2165/1159572-s0-000000000-00000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common serious neurological conditions worldwide, with an age-adjusted incidence of approximately 50 per 100,000 persons per year in developed countries. Antiepileptic therapy can result in long-term remission in 60-70% of patients, but many patients will require combination treatment to achieve optimal seizure control, as monotherapy is ineffective at controlling seizures in 30-53% of patients. Despite the increase in available treatment options, patient outcomes have not improved significantly and there is still a need for more effective therapies. Drugs used in the treatment of focal-onset seizures are a diverse range of compounds, and in most cases their mechanism of action is unknown or poorly defined. This review discusses the efficacy and safety of the newer adjuvant antiepileptic therapies that may improve outcomes in patients unresponsive to monotherapy, including clobazam, vigabatrin, lamotrigine, gabapentin, topiramate, tiagabine, levetiracetam, oxcarbazepine, pregabalin, zonisamide and eslicarbazepine, with focus on lacosamide. Lacosamide has been shown to exert its anticonvulsant effects predominantly by enhancement of the slow inactivation of voltage-gated sodium channels. Lacosamide is indicated for use as adjuvant treatment of focal-onset seizures in patients with epilepsy, and there is some evidence that it may also be of use in patients with status epilepticus and cancer patients with epilepsy. The efficacy of lacosamide has been assessed in three randomized, double-blind, placebo-controlled clinical trials, all of which have shown lacosamide to be effective at reducing seizure frequency and increasing 50% responder rates in patients with focal-onset seizures. Long-term lacosamide treatment is generally well tolerated and is not associated with significant drug interactions; the availability of an intravenous form of the drug also makes it particularly useful for a broad range of patients.
Collapse
Affiliation(s)
- Juan Luis Becerra
- Servicio de Neurologa, Unidad de Epilepsia, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | | | | | | |
Collapse
|
33
|
Chung SS, Kelly K, Schusse C. New and emerging treatments for epilepsy: review of clinical studies of lacosamide, eslicarbazepine acetate, ezogabine, rufinamide, perampanel, and electrical stimulation therapy. J Epilepsy Res 2011; 1:35-46. [PMID: 24649444 PMCID: PMC3952328 DOI: 10.14581/jer.11008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/26/2023] Open
Abstract
Although many different medical and surgical treatment options for epilepsy exist, approximately 30% of epilepsy patients remain poorly controlled. For those patients who are refractory to medical treatment, epilepsy surgery often provides meaningful improvement. However, when surgical resection of epileptic foci cannot be offered or failed, combined administration of AEDs or the application of novel AEDs is the most appropriate therapeutic options. The most recent AEDs tend to offer new mechanisms of action and more favorable safety profiles than the first generation of AEDs. More recently, alternative options of thalamic or cortical stimulation emerged as potentiall effective treatment for epilepsy. The purpose of this article is to compare and review clinical information for the new and emerging medications such as lacosamide, eslicarbazepine acetate, ezogabine (retigabine), rufinamide, perampanel, as well as deep brain stimulation and responsive neurostimulation devices.
Collapse
Affiliation(s)
- Steve S. Chung
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristen Kelly
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Courtney Schusse
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
34
|
|
35
|
Borges K, Sonnewald U. Triheptanoin--a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res 2011; 100:239-44. [PMID: 21855298 DOI: 10.1016/j.eplepsyres.2011.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/16/2011] [Accepted: 05/25/2011] [Indexed: 01/30/2023]
Abstract
The triglyceride of heptanoate (C7 fatty acid), triheptanoin, is a tasteless oil used to treat rare metabolic disorders in USA and France. Heptanoate is metabolized by β-oxidation to provide propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis - the refilling of the tricarboxylic acid cycle. Heptanoate is also metabolized by the liver to the C5 ketones, β-ketopentanoate and/or β-hydroxypentanoate, which are released into the blood and thought to enter the brain via monocarboxylate transporters. Oral triheptanoin has recently been discovered to be reproducibly anticonvulsant in acute and chronic mouse seizures models. However, current knowledge on alterations of brain metabolism after triheptanoin administration and anaplerosis via propionyl-CoA carboxylation in the brain is limited. This review outlines triheptanoin's unique anticonvulsant profile and its clinical potential for the treatment of medically refractory epilepsy. Anaplerosis as a therapeutic approach for the treatment of epilepsy is discussed. More research is needed to elucidate the anticonvulsant mechanism of triheptanoin and to reveal its clinical potential for the treatment of epilepsy and other disorders of the brain.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | | |
Collapse
|
36
|
Abstract
This article discusses seven newly available antiepileptic drugs (AEDs) and agents in phase III development. Lacosamide, licensed as an adjunctive treatment for partial-onset seizures, primarily acts by enhancing sodium channel slow inactivation. At daily doses of 200-600 mg, the drug significantly reduced partial-onset seizures in adults with refractory epilepsy. The most common adverse effects are CNS related. Rufinamide, available as adjunctive treatment for seizures associated with Lennox-Gastaut syndrome, has an unclear mechanism of action, although it does block voltage-dependent sodium channels. Coadministration of valproic acid significantly increases rufinamide circulating concentrations. The drug has been shown to have efficacy for partial-onset, primary generalized tonic-clonic, tonic-atonic, absence and atypical absence seizures. Adverse effects are mainly somnolence, nausea and vomiting. Eslicarbazepine acetate, a carbamazepine analogue, was recently licensed as adjunctive treatment for partial-onset seizures. Eslicarbazepine acetate acts at voltage-gated sodium channels, although the precise mechanism of action is unclear. The drug had efficacy for partial-onset seizures in three randomized, double-blind, placebo-controlled studies, using 400, 800 or 1200 mg/day. Adverse effects include dizziness and somnolence. Retigabine (ezogabine) exerts its anticonvulsant effect through the opening of neuronal voltage-gated potassium channels. Following significant seizure reduction rates at dosages of 600, 900 and 1200 mg/day, license applications have been submitted for its use as adjunctive treatment for patients with partial-onset seizures. Dose-related adverse effects include somnolence, confusion and dizziness. Brivaracetam is the n-propyl analogue of levetiracetam. Mixed results have been obtained in phase III studies in patients with partial-onset seizures, and further trials in children, patients with photosensitive epilepsy and patients with partial-onset seizures are ongoing. Dizziness, headache and somnolence are the most common adverse effects reported. Perampanel was designed as an AMPA-type glutamate receptor antagonist. Following encouraging results from phase II studies in patients with refractory partial-onset seizures, recruitment for phase III trials is almost complete. Ganaxolone is a neurosteroid with potent antiepileptic activity that modulates GABA(A) receptors in the CNS. Ganaxolone has shown promise in a variety of seizure types. Dizziness and somnolence have been reported in some patients. The availability of new AEDs has widened the choices for clinicians treating patients with epilepsy. However, given the minimal improvement in prognosis and disappointing efficacy outcomes in double-blind, placebo-controlled, dose-ranging regulatory trials, it seems unlikely that these novel agents will have a major impact on outcomes for people with epilepsy.
Collapse
Affiliation(s)
- Linda J Stephen
- Epilepsy Unit, Division of Cardiovascular and Medical Sciences, Western Infirmary, Glasgow, Scotland
| | | |
Collapse
|
37
|
Wasterlain CG, Stöhr T, Matagne A. The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Res 2011; 94:10-7. [PMID: 21277168 DOI: 10.1016/j.eplepsyres.2010.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/21/2010] [Accepted: 12/27/2010] [Indexed: 12/31/2022]
Abstract
The effective management of status epilepticus (SE) continues to be a therapeutic challenge. The aim of this study was to investigate the efficacy of lacosamide treatment in an experimental model of self-sustaining SE. Rats were treated with lacosamide (3, 10, 30 or 50mg/kg) either 10 min (early treatment) or 40 min (late treatment) after the initiation of perforant path stimulation. Early lacosamide treatment significantly and dose-dependently reduced acute SE seizure activity; late treatment showed only a non-significant trend toward reduced seizure activity. Early lacosamide treatment also dose-dependently reduced the number of spontaneous recurrent seizures following a 6-week waiting period, with 70% reduction at the highest dose tested (50mg/kg); there was also a significant reduction in the number of spikes and the cumulative time spent in seizures. Late treatment with high-dose lacosamide (30-50mg/kg) reduced the number of animals that developed spontaneous recurrent seizures (33% vs 100% in controls, P<.05), but did not significantly reduce seizure severity or frequency in rats that developed spontaneous recurrent seizures. The results presented here suggest that lacosamide deserves investigation for the clinical treatment of SE. Potential for disease modification in this rat model of self-sustaining SE will require further studies.
Collapse
Affiliation(s)
- Claude G Wasterlain
- Department of Neurology, and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
38
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
39
|
Silva I, Lin K, Jackowski AP, Centeno RDS, Pinto ML, Carrete H, Yacubian EM, Amado D. Absence of gender effect on amygdala volume in temporal lobe epilepsy. Epilepsy Behav 2010; 19:501-3. [PMID: 20920847 DOI: 10.1016/j.yebeh.2010.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/20/2010] [Accepted: 08/28/2010] [Indexed: 11/17/2022]
Abstract
Sexual dimorphism has already been described in temporal lobe epilepsy with mesial temporal sclerosis (TLE-MTS). This study evaluated the effect of gender on amygdala volume in patients with TLE-MTS. One hundred twenty-four patients with refractory unilateral or bilateral TLE-MTS who were being considered for epilepsy surgery underwent a comprehensive presurgical evaluation and MRI. Amygdalas of 67 women (27 with right; 32 with left, and 8 with bilateral TLE) and 57 men (22 with right, 30 with left, and 5 with bilateral TLE) were manually segmented. Significant ipsilateral amygdala volume reduction was observed for patients with right and left TLE. No gender effect on amygdala volume was observed. Contralateral amygdalar asymmetry was observed for patients with right and left TLE. Although no gender effect was observed on amygdala volume, ipsilateral amygdala volume reductions in patients with TLE might be related to differential rates of cerebral maturation between hemispheres.
Collapse
Affiliation(s)
- Ivaldo Silva
- Gynecology Department, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung SS. Lacosamide: new adjunctive treatment option for partial-onset seizures. Expert Opin Pharmacother 2010; 11:1595-602. [PMID: 20482307 DOI: 10.1517/14656566.2010.488639] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Epilepsy is one of the most common neurological disorders, affecting up to 2% of the population worldwide. Studies show that patients with refractory seizures have higher morbidity and mortality rates, as well as a poorer quality of life, than those with controlled seizures. Therefore, treatment that reduces the frequency of seizures may improve patients' quality of life. Lacosamide (LCM) is a recently approved anticonvulsant in Europe and the USA which offers new mechanisms of action and favorable safety profiles. Efficacy data have shown fast onset of anticonvulsant effects and significant reduction of partial-onset seizures as adjunctive therapy at LCM 200 and 400 mg/day, even in a severely refractory population. AREAS COVERED IN THIS REVIEW This article reviews three pivotal clinical trials of LCM, including its efficacy and tolerability over 7 years. In addition, LCM's key pharmacodynamics and pharmacokinetics from a search of the literature are reviewed in detail. This article also includes recent publications on the safety and use of intravenous LCM solution for patients with epilepsy. WHAT THE READER WILL GAIN This article provides comprehensive review of efficacy and safety information of LCM along with comprehensive pharmacokinetic information, which includes absolute bioavailability, low protein binding, lack of hepatic enzyme induction or inhibition, and low potential for drug-drug interactions. TAKE HOME MESSAGE Considering the fact that more than 30% of epilepsy patients remain refractory despite various antiepileptic drugs, LCM may provide added benefit to patients with refractory seizures.
Collapse
Affiliation(s)
- Steve S Chung
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.
| |
Collapse
|
41
|
Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 2010; 40:565-72. [PMID: 20691264 DOI: 10.1016/j.nbd.2010.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined.
Collapse
|
42
|
Garcia Garcia M, Garcia Morales I, Matías Guiu J. Experimental models in epilepsy. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
43
|
|
44
|
|
45
|
Abstract
In the last fifteen years, new antiepileptic medications have been offered for the treatment of patients with epilepsy. Nevertheless, despite optimal medical treatment, up to 30% of patients still experience recurrent seizures and the challenge for new, more efficacious and better-tolerated drugs continues. New antiepileptic drugs include the evolution of pre-existing drugs and new compounds identified through the investigation of additional molecular targets, such as SV2A synaptic vesicle protein, voltage-gated potassium channels, ionotropic and metabotropic glutamate receptors, and gap junctions. This paper reviews the available information on various classes of molecules that are in the pipeline as well as on the innovative approaches to the treatment of epilepsy.
Collapse
Affiliation(s)
- Pasquale Striano
- Muscular & Neurodegenerative Diseases Unit, Institute G. Gaslini, Genova, Italy
| | | |
Collapse
|
46
|
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing inservices. A comprehensive target drug utilization evaluation (DUE) is also provided each month. With a subscription, the monographs are sent in print and are also available online. Monographs can be customized to meet the needs of a facility. Subscribers to The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800-322-4349. The June 2009 monograph topics are everolimus; Japanese encephalitis vaccine, inactivated; inhaled insulin; pitavastatin; and dabigatran etexilate. The DUE is on plerixafor.
Collapse
Affiliation(s)
| | - Terri L. Levien
- Drug Information Center, Washington State University, Spokane, Washington
| | - Danial E. Baker
- Drug Information Center, and College of Pharmacy, Washington State University Spokane PO Box 1495, Spokane, WA 99210–1495
| |
Collapse
|
47
|
Halász P, Kälviäinen R, Mazurkiewicz-Beldzińska M, Rosenow F, Doty P, Hebert D, Sullivan T. Adjunctive lacosamide for partial-onset seizures: Efficacy and safety results from a randomized controlled trial. Epilepsia 2009; 50:443-53. [DOI: 10.1111/j.1528-1167.2008.01951.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Curia G, Biagini G, Perucca E, Avoli M. Lacosamide: a new approach to target voltage-gated sodium currents in epileptic disorders. CNS Drugs 2009; 23:555-68. [PMID: 19552484 PMCID: PMC4878900 DOI: 10.2165/00023210-200923070-00002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism of action of several antiepileptic drugs (AEDs) rests on their ability to modulate the activity of voltage-gated sodium currents that are responsible for fast action potential generation. Recent data indicate that lacosamide (a compound with analgesic and anticonvulsant effects in animal models) shares a similar mechanism. When compared with other AEDs, lacosamide has the unique ability to interact with sodium channel slow inactivation without affecting fast inactivation. This article reviews these findings and discusses their relevance within the context of neuronal activity seen during epileptiform discharges generated by limbic neuronal networks in the presence of chemical convulsants. These seizure-like events are characterized by sustained discharges of sodium-dependent action potentials supported by robust depolarizations, thus providing synchronization within neuronal networks. Generally, AEDs such as phenytoin, carbamazepine and lamotrigine block sodium channels when activated. In contrast, lacosamide facilitates slow inactivation of sodium channels both in terms of kinetics and voltage dependency. This effect may be relatively selective for repeatedly depolarized neurons, such as those participating in seizure activity in which the persistence of sodium currents is more pronounced and promotes neuronal excitation. The clinical effectiveness of lacosamide has been demonstrated in randomized, double-blind, parallel-group, placebo-controlled, adjunctive-therapy trials in patients with refractory partial seizures. Further studies should determine whether the effects of lacosamide in animal models and in clinical settings are fully explained by its selective action on sodium current slow inactivation or whether other effects (e.g. interactions with the collapsin-response mediator protein-2) play a contributory role.
Collapse
Affiliation(s)
- Giulia Curia
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, Québec, Canada
| | - Giuseppe Biagini
- Department of Biomedical Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Emilio Perucca
- Department of Internal Medicine and Medical Therapy, University of Pavia and Clinical Trial Center, Neurological Institute IRCCS “Fondazione C. Mondino”, Pavia, Italy
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, Québec, Canada,Department of Experimental Medicine, “La Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
49
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2008; 83:1-43. [PMID: 19008076 DOI: 10.1016/j.eplepsyres.2008.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/07/2008] [Accepted: 09/15/2008] [Indexed: 12/18/2022]
Abstract
The Ninth Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT IX, took place in Sitges, Barcelona from the 15th to 19th of June 2008. Over 300 basic scientists, clinical pharmacologists and neurologists from 25 countries attended the conference, whose main themes included old and new AEDs in generalized epilepsies, novel formulations and routes of administration of AEDs, common targets and mechanisms of action of drugs for treating epilepsy and other central nervous system (CNS) disorders, and opportunities and perspectives in new AED discovery. Consistent with previous formats of this conference, a large part of the programme was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 1989. Unlike previous EILAT manuscripts, the current (EILAT IX) manuscript focuses only on the preclinical and clinical pharmacology of AEDs that are currently in development. These include brivaracetam, carisbamate (RWJ-333369), 2-deoxy-d-glucose, eslicarbazepine acetate (BIA-2-093), ganaxolone, huperzine, JZP-4, lacosamide, NAX-5055, propylisopropylacetamide (PID), retigabine, T-2000, tonabersat, valrocemide and YKP-3089. The CNS efficacy of these compounds in anticonvulsant animal models as well as other disease model systems are presented in first and second tables and their proposed mechanisms of action are summarized in the third table.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, Ein Karem, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
50
|
Czapp M, Bankstahl JP, Zibell G, Potschka H. Brain penetration and anticonvulsant efficacy of intranasal phenobarbital in rats. Epilepsia 2008; 49:1142-50. [DOI: 10.1111/j.1528-1167.2008.01582.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|